Beispiel #1
0
    def __init__(self, source):
        """Reader MEG data from texfiles or file-like objects.

        Parameters
        ----------
        source : str or file-like
          Strings are assumed to be filenames (with `.gz` suffix
          compressed), while all other object types are treated as file-like
          objects.
        """
        self.ntimepoints = None
        self.timepoints = None
        self.nsamples = None
        self.channelids = []
        self.data = []
        self.samplingrate = None

        # open textfiles
        if isinstance(source, str):
            if source.endswith('.gz'):
                externals.exists('gzip', raise_=True)
                import gzip
                source = gzip.open(source, 'r')
            else:
                source = open(source, 'r')

        # read file
        for line in source:
            # split ID
            colon = line.find(':')

            # ignore lines without id
            if colon == -1:
                continue

            id = line[:colon]
            data = line[colon+1:].strip()
            if id == 'Sample Number':
                timepoints = np.fromstring(data, dtype=int, sep='\t')
                # one more as it starts with zero
                self.ntimepoints = int(timepoints.max()) + 1
                self.nsamples = int(len(timepoints) / self.ntimepoints)
            elif id == 'Time':
                self.timepoints = np.fromstring(data,
                                               dtype=float,
                                               count=self.ntimepoints,
                                               sep='\t')
                self.samplingrate = self.ntimepoints \
                    / (self.timepoints[-1] - self.timepoints[0])
            else:
                # load data
                self.data.append(
                    np.fromstring(data, dtype=float, sep='\t').reshape(
                        self.nsamples, self.ntimepoints))
                # store id
                self.channelids.append(id)

        # reshape data from (channels x samples x timepoints) to
        # (samples x chanels x timepoints)
        self.data = np.swapaxes(np.array(self.data), 0, 1)
Beispiel #2
0
    def plot(self, label_index=0):
        """

        TODO: make it friendly to labels given by values?
              should we also treat labels_map?
        """
        externals.exists("pylab", raise_=True)
        import pylab as pl

        self._compute()

        labels = self._labels
        # select only rocs for the given label
        rocs = self.rocs[label_index]

        fig = pl.gcf()
        ax = pl.gca()

        pl.plot([0, 1], [0, 1], 'k:')

        for ROC in rocs:
            pl.plot(ROC.fp, ROC.tp, linewidth=1)

        pl.axis((0.0, 1.0, 0.0, 1.0))
        pl.axis('scaled')
        pl.title('Label %s. Mean AUC=%.2f' % (label_index, self.aucs[label_index]))

        pl.xlabel('False positive rate')
        pl.ylabel('True positive rate')
Beispiel #3
0
    def _postcall(self, dataset, result):
        """Some postprocessing on the result
        """
        self.raw_result = result
        if not self.__transformer is None:
            if __debug__:
                debug("SA_", "Applying transformer %s" % self.__transformer)
            result = self.__transformer(result)

        # estimate the NULL distribution when functor is given
        if not self.__null_dist is None:
            if __debug__:
                debug("SA_", "Estimating NULL distribution using %s"
                      % self.__null_dist)

            # we need a matching datameasure instance, but we have to disable
            # the estimation of the null distribution in that child to prevent
            # infinite looping.
            measure = copy.copy(self)
            measure.__null_dist = None
            self.__null_dist.fit(measure, dataset)

            if self.states.isEnabled('null_t'):
                # get probability under NULL hyp, but also request
                # either it belong to the right tail
                null_prob, null_right_tail = \
                           self.__null_dist.p(result, return_tails=True)
                self.null_prob = null_prob

                externals.exists('scipy', raiseException=True)
                from scipy.stats import norm

                # TODO: following logic should appear in NullDist,
                #       not here
                tail = self.null_dist.tail
                if tail == 'left':
                    acdf = N.abs(null_prob)
                elif tail == 'right':
                    acdf = 1.0 - N.abs(null_prob)
                elif tail in ['any', 'both']:
                    acdf = 1.0 - N.clip(N.abs(null_prob), 0, 0.5)
                else:
                    raise RuntimeError, 'Unhandled tail %s' % tail
                # We need to clip to avoid non-informative inf's ;-)
                # that happens due to lack of precision in mantissa
                # which is 11 bits in double. We could clip values
                # around 0 at as low as 1e-100 (correspond to z~=21),
                # but for consistency lets clip at 1e-16 which leads
                # to distinguishable value around p=1 and max z=8.2.
                # Should be sufficient range of z-values ;-)
                clip = 1e-16
                null_t = norm.ppf(N.clip(acdf, clip, 1.0 - clip))
                null_t[~null_right_tail] *= -1.0 # revert sign for negatives
                self.null_t = null_t                 # store
            else:
                # get probability of result under NULL hypothesis if available
                # and don't request tail information
                self.null_prob = self.__null_dist.p(result)

        return result
Beispiel #4
0
def _data2img(data, hdr=None, imgtype=None):
    # input data is t,x,y,z
    if externals.exists("nibabel"):
        # let's try whether we can get it done with nibabel
        import nibabel

        if imgtype is None:
            # default is NIfTI1
            itype = nibabel.Nifti1Image
        else:
            itype = imgtype
        if issubclass(itype, nibabel.spatialimages.SpatialImage) and (hdr is None or hasattr(hdr, "get_data_dtype")):
            # we can handle the desired image type and hdr with nibabel
            # use of `None` for the affine should cause to pull it from
            # the header
            return itype(_get_xyzt_shaped(data), None, hdr)
        # otherwise continue and see if there is hope ....
    if externals.exists("nifti"):
        # maybe pynifti can help
        import nifti

        if imgtype is None:
            itype = nifti.NiftiImage
        else:
            itype = imgtype
        if issubclass(itype, nifti.NiftiImage) and (hdr is None or isinstance(hdr, dict)):
            # pynifti wants it transposed
            return itype(_get_xyzt_shaped(data).T, hdr)

    raise RuntimeError(
        "Cannot convert data to an MRI image "
        "(backends: nibabel(%s), pynifti(%s). Got hdr='%s', "
        "imgtype='%s'." % (externals.exists("nibabel"), externals.exists("nifti"), hdr, imgtype)
    )
Beispiel #5
0
    def __init__(self, sd=0, distribution='rdist', fpp=None, nbins=400, **kwargs):
        """L2-Norm the values, convert them to p-values of a given distribution.

        Parameters
        ----------
        sd : int
          Samples dimension (if len(x.shape)>1) on which to operate
        distribution : string
          Which distribution to use. Known are: 'rdist' (later normal should
          be there as well)
        fpp : float
          At what p-value (both tails) if not None, to control for false
          positives. It would iteratively prune the tails (tentative real positives)
          until empirical p-value becomes less or equal to numerical.
        nbins : int
          Number of bins for the iterative pruning of positives

        WARNING: Highly experimental/slow/etc: no theoretical grounds have been
        presented in any paper, nor proven
        """
        externals.exists('scipy', raise_=True)
        ClassWithCollections.__init__(self, **kwargs)

        self.sd = sd
        if not (distribution in ['rdist']):
            raise ValueError, "Actually only rdist supported at the moment" \
                  " got %s" % distribution
        self.distribution = distribution
        self.fpp = fpp
        self.nbins = nbins
Beispiel #6
0
    def __init__(self,
                 sd=0,
                 distribution='rdist',
                 fpp=None,
                 nbins=400,
                 **kwargs):
        """L2-Norm the values, convert them to p-values of a given distribution.

        Parameters
        ----------
        sd : int
          Samples dimension (if len(x.shape)>1) on which to operate
        distribution : string
          Which distribution to use. Known are: 'rdist' (later normal should
          be there as well)
        fpp : float
          At what p-value (both tails) if not None, to control for false
          positives. It would iteratively prune the tails (tentative real positives)
          until empirical p-value becomes less or equal to numerical.
        nbins : int
          Number of bins for the iterative pruning of positives

        WARNING: Highly experimental/slow/etc: no theoretical grounds have been
        presented in any paper, nor proven
        """
        externals.exists('scipy', raise_=True)
        ClassWithCollections.__init__(self, **kwargs)

        self.sd = sd
        if not (distribution in ['rdist']):
            raise ValueError, "Actually only rdist supported at the moment" \
                  " got %s" % distribution
        self.distribution = distribution
        self.fpp = fpp
        self.nbins = nbins
Beispiel #7
0
    def testExternalsCorrect2ndInvocation(self):
        # always fails
        externals._KNOWN["checker2"] = "raise ImportError"

        self.failUnless(not externals.exists("checker2"), msg="Should be False on 1st invocation")

        self.failUnless(not externals.exists("checker2"), msg="Should be False on 2nd invocation as well")

        externals._KNOWN.pop("checker2")
Beispiel #8
0
 def plot(self):
     """Plot correlation coefficients
     """
     externals.exists('pylab', raise_=True)
     import pylab as pl
     pl.plot(self['corrcoef'])
     pl.title('Auto-correlation of the sequence')
     pl.xlabel('Offset')
     pl.ylabel('Correlation Coefficient')
     pl.show()
Beispiel #9
0
    def test_externals_correct2nd_invocation(self):
        # always fails
        externals._KNOWN['checker2'] = 'raise ImportError'

        self.failUnless(not externals.exists('checker2'),
                        msg="Should be False on 1st invocation")

        self.failUnless(not externals.exists('checker2'),
                        msg="Should be False on 2nd invocation as well")

        externals._KNOWN.pop('checker2')
Beispiel #10
0
    def test_externals_no_double_invocation(self):
        # no external should be checking twice (unless specified
        # explicitely)

        class Checker(object):
            """Helper class to increment count of actual checks"""
            def __init__(self): self.checked = 0
            def check(self): self.checked += 1

        checker = Checker()

        externals._KNOWN['checker'] = 'checker.check()'
        externals.__dict__['checker'] = checker
        externals.exists('checker')
        self.failUnlessEqual(checker.checked, 1)
        externals.exists('checker')
        self.failUnlessEqual(checker.checked, 1)
        externals.exists('checker', force=True)
        self.failUnlessEqual(checker.checked, 2)
        externals.exists('checker')
        self.failUnlessEqual(checker.checked, 2)

        # restore original externals
        externals.__dict__.pop('checker')
        externals._KNOWN.pop('checker')
Beispiel #11
0
    def testExternalsNoDoubleInvocation(self):
        # no external should be checking twice (unless specified
        # explicitely)

        class Checker(object):
            """Helper class to increment count of actual checks"""

            def __init__(self):
                self.checked = 0

            def check(self):
                self.checked += 1

        checker = Checker()

        externals._KNOWN["checker"] = "checker.check()"
        externals.__dict__["checker"] = checker
        externals.exists("checker")
        self.failUnlessEqual(checker.checked, 1)
        externals.exists("checker")
        self.failUnlessEqual(checker.checked, 1)
        externals.exists("checker", force=True)
        self.failUnlessEqual(checker.checked, 2)
        externals.exists("checker")
        self.failUnlessEqual(checker.checked, 2)

        # restore original externals
        externals.__dict__.pop("checker")
        externals._KNOWN.pop("checker")
Beispiel #12
0
    def _postcall(self, dataset, result):
        """Some postprocessing on the result
        """
        self.ca.raw_results = result

        # post-processing
        result = super(Measure, self)._postcall(dataset, result)
        if not self.__null_dist is None:
            if self.ca.is_enabled('null_t'):
                # get probability under NULL hyp, but also request
                # either it belong to the right tail
                null_prob, null_right_tail = \
                           self.__null_dist.p(result, return_tails=True)
                self.ca.null_prob = null_prob

                externals.exists('scipy', raise_=True)
                from scipy.stats import norm

                # TODO: following logic should appear in NullDist,
                #       not here
                tail = self.null_dist.tail
                if tail == 'left':
                    acdf = np.abs(null_prob.samples)
                elif tail == 'right':
                    acdf = 1.0 - np.abs(null_prob.samples)
                elif tail in ['any', 'both']:
                    acdf = 1.0 - np.clip(np.abs(null_prob.samples), 0, 0.5)
                else:
                    raise RuntimeError, 'Unhandled tail %s' % tail
                # We need to clip to avoid non-informative inf's ;-)
                # that happens due to lack of precision in mantissa
                # which is 11 bits in double. We could clip values
                # around 0 at as low as 1e-100 (correspond to z~=21),
                # but for consistency lets clip at 1e-16 which leads
                # to distinguishable value around p=1 and max z=8.2.
                # Should be sufficient range of z-values ;-)
                clip = 1e-16
                null_t = norm.ppf(np.clip(acdf, clip, 1.0 - clip))
                # assure that we deal with arrays:
                null_t = np.array(null_t, ndmin=1, copy=False)
                null_t[~null_right_tail] *= -1.0 # revert sign for negatives
                null_t_ds = null_prob.copy(deep=False)
                null_t_ds.samples = null_t
                self.ca.null_t = null_t_ds          # store as a Dataset
            else:
                # get probability of result under NULL hypothesis if available
                # and don't request tail information
                self.ca.null_prob = self.__null_dist.p(result)

        return result
Beispiel #13
0
    def _reverse(self, data):
        if __debug__:
            debug('MAP', "Converting signal back using DWP")

        if self.__level is None:
            raise NotImplementedError
        else:
            if not externals.exists('pywt wp reconstruct'):
                raise NotImplementedError, \
                      "Reconstruction for a single level for versions of " \
                      "pywt < 0.1.7 (revision 103) is not supported"
            if not externals.exists('pywt wp reconstruct fixed'):
                warning("Reconstruction using available version of pywt might "
                        "result in incorrect data in the tails of the signal")
            return self.__reverseSingleLevel(data)
    def __init__(self,
                 gnb,
                 splitter,
                 qe,
                 errorfx=MeanMismatchErrorFx(),
                 indexsum=None,
                 **kwargs):
        """Initialize a GNBSearchlight

        Parameters
        ----------
        gnb : `GNB`
          `GNB` classifier as the specification of what GNB parameters
          to use. Instance itself isn't used.
        splitter : `Splitter`
          `Splitter` to use to compute the error.
        errorfx : func, optional
          Functor that computes a scalar error value from the vectors of
          desired and predicted values (e.g. subclass of `ErrorFunction`)
        indexsum : ('sparse', 'fancy'), optional
          What use to compute sums over arbitrary columns.  'fancy'
          corresponds to regular fancy indexing over columns, whenever
          in 'sparse', produce of sparse matrices is used (usually
          faster, so is default if `scipy` is available.
        """

        # init base class first
        BaseSearchlight.__init__(self, qe, **kwargs)

        self._errorfx = errorfx
        self._splitter = splitter
        self._gnb = gnb

        if indexsum is None:
            if externals.exists('scipy'):
                indexsum = 'sparse'
            else:
                indexsum = 'fancy'
        else:
            if indexsum == 'sparse' and not externals.exists('scipy'):
                warning("Scipy.sparse isn't available so taking 'fancy' as "
                        "'indexsum' method.")
                indexsum = 'fancy'
        self._indexsum = indexsum

        if not self._nproc in (None, 1):
            raise NotImplementedError, "For now only nproc=1 (or None for " \
                  "autodetection) is supported by GNBSearchlight"
    def test_chi_square_searchlight(self):
        # only do partial to save time

        # Can't yet do this since test_searchlight isn't yet "under nose"
        #skip_if_no_external('scipy')
        if not externals.exists('scipy'):
            return

        from mvpa.misc.stats import chisquare

        transerror = TransferError(sample_clf_lin)
        cv = CrossValidatedTransferError(
                transerror,
                NFoldSplitter(cvtype=1),
                enable_ca=['confusion'])


        def getconfusion(data):
            cv(data)
            return chisquare(cv.ca.confusion.matrix)[0]

        sl = sphere_searchlight(getconfusion, radius=0,
                         center_ids=[3,50])

        # run searchlight
        results = sl(self.dataset)
        self.failUnless(results.nfeatures == 2)
Beispiel #16
0
    def __init__(self, normalizer_cls=None, normalizer_args=None, **kwargs):
        """
        Parameters
        ----------
        normalizer_cls : sg.Kernel.CKernelNormalizer
          Class to use as a normalizer for the kernel.  Will be instantiated
          upon compute().  Only supported for shogun >= 0.6.5.
          By default (if left None) assigns IdentityKernelNormalizer to assure no
          normalization.
        normalizer_args : None or list
          If necessary, provide a list of arguments for the normalizer.
        """
        SGKernel.__init__(self, **kwargs)
        if (normalizer_cls is not None) and (versions['shogun:rev'] < 3377):
            raise ValueError, \
               "Normalizer specification is supported only for sg >= 0.6.5. " \
               "Please upgrade shogun python modular bindings."

        if normalizer_cls is None and exists('sg ge 0.6.5'):
            normalizer_cls = sgk.IdentityKernelNormalizer
        self._normalizer_cls = normalizer_cls

        if normalizer_args is None:
            normalizer_args = []
        self._normalizer_args = normalizer_args
    def test_confusion_plot2(self):

        array = np.array
        uint8 = np.uint8
        sets = [(array([1, 2]), array([1, 1]),
                 array([[0.54343765, 0.45656235], [0.92395853, 0.07604147]])),
                (array([1, 2]), array([1, 1]),
                 array([[0.98030832, 0.01969168], [0.78998763, 0.21001237]])),
                (array([1, 2]), array([1, 1]),
                 array([[0.86125263, 0.13874737], [0.83674113, 0.16325887]])),
                (array([1, 2]), array([1, 1]),
                 array([[0.57870383, 0.42129617], [0.59702509, 0.40297491]])),
                (array([1, 2]), array([1, 1]),
                 array([[0.89530255, 0.10469745], [0.69373919, 0.30626081]])),
                (array([1, 2]), array([1, 1]),
                 array([[0.75015218, 0.24984782], [0.9339767, 0.0660233]])),
                (array([1, 2]), array([1, 2]),
                 array([[0.97826616, 0.02173384], [0.38620638, 0.61379362]])),
                (array([2]), array([2]), array([[0.46893776, 0.53106224]]))]
        try:
            cm = ConfusionMatrix(sets=sets)
        except:
            self.fail()
        if externals.exists("pylab plottable"):
            import pylab as pl
            #pl.figure()
            #print cm
            fig, im, cb = cm.plot(origin='lower', numbers=True)
            #pl.plot()
            self.failUnless((cm._plotted_confusionmatrix == cm.matrix).all())
            pl.close(fig)
Beispiel #18
0
    def testChiSquareSearchlight(self):
        # only do partial to save time
        if not externals.exists('scipy'):
            return

        from mvpa.misc.stats import chisquare

        transerror = TransferError(sample_clf_lin)
        cv = CrossValidatedTransferError(
                transerror,
                NFoldSplitter(cvtype=1),
                enable_states=['confusion'])


        def getconfusion(data):
            cv(data)
            return chisquare(cv.confusion.matrix)[0]

        # contruct radius 1 searchlight
        sl = Searchlight(getconfusion, radius=1.0,
                         center_ids=[3,50])

        # run searchlight
        results = sl(self.dataset)

        self.failUnless(len(results) == 2)
Beispiel #19
0
def _img2data(src):
    # break early of nothing has been given
    # XXX feels a little strange to handle this so deep inside, but well...
    if src is None:
        return None

    excpt = None
    if externals.exists('nibabel'):
        # let's try whether we can get it done with nibabel
        import nibabel
        if isinstance(src, str):
            # filename
            try:
                img = nibabel.load(src)
            except nibabel.spatialimages.ImageFileError, excpt:
                # nibabel has some problem, but we might be lucky with
                # pynifti below. if not, we have stored the exception
                # and raise it below
                img = None
                pass
        else:
            # assume this is an image already
            img = src
        if isinstance(img, nibabel.spatialimages.SpatialImage):
            # nibabel image, dissect and return pieces
            return _get_txyz_shaped(img.get_data()), img.get_header()
Beispiel #20
0
def save(dataset, destination, name=None, compression=None):
    """Save Dataset into HDF5 file

    Parameters
    ----------
    dataset : `Dataset`
    destination : `h5py.highlevel.File` or str
    name : str, optional
    compression : None or int or {'gzip', 'szip', 'lzf'}, optional
      Level of compression for gzip, or another compression strategy.
    """
    if not externals.exists('h5py'):
        raise RuntimeError("Missing 'h5py' package -- saving is not possible.")

    import h5py
    from mvpa.base.hdf5 import obj2hdf

    # look if we got an hdf file instance already
    if isinstance(destination, h5py.highlevel.File):
        own_file = False
        hdf = destination
    else:
        own_file = True
        hdf = h5py.File(destination, 'w')

    obj2hdf(hdf, dataset, name, compression=compression)

    # if we opened the file ourselves we close it now
    if own_file:
        hdf.close()
    return
Beispiel #21
0
    def testResampling(self):
        ds = EEPDataset(os.path.join(pymvpa_dataroot, 'eep.bin'),
                        labels=[1, 2], labels_map={1:100, 2:101})
        channelids = N.array(ds.channelids).copy()
        self.failUnless(N.round(ds.samplingrate) == 500.0)

        if not externals.exists('scipy'):
            return

        # should puke when called with nothing
        self.failUnlessRaises(ValueError, ds.resample)

        # now for real -- should divide nsamples into half
        rds = ds.resample(sr=250, inplace=False)
        # We should have not changed anything
        self.failUnless(N.round(ds.samplingrate) == 500.0)

        # by default do 'inplace' resampling
        ds.resample(sr=250)
        for d in [rds, ds]:
            self.failUnless(N.round(d.samplingrate) == 250)
            self.failUnless(d.nsamples == 2)
            self.failUnless(N.abs((d.dt - 1.0/250)/d.dt)<1e-5)
            self.failUnless(N.all(d.channelids == channelids))
            # lets now see if we still have a mapper
            self.failUnless(d.O.shape == (2, len(channelids), 2))
            # and labels_map
            self.failUnlessEqual(d.labels_map, {1:100, 2:101})
Beispiel #22
0
    def test_dist_p_value(self):
        """Basic testing of DistPValue"""
        if not externals.exists('scipy'):
            return
        ndb = 200
        ndu = 20
        nperd = 2
        pthr = 0.05
        Nbins = 400

        # Lets generate already normed data (on sphere) and add some nonbogus features
        datau = (np.random.normal(size=(nperd, ndb)))
        dist = np.sqrt((datau * datau).sum(axis=1))

        datas = (datau.T / dist.T).T
        tn = datax = datas[0, :]
        dataxmax = np.max(np.abs(datax))

        # now lets add true positive features
        tp = [-dataxmax * 1.1] * (ndu/2) + [dataxmax * 1.1] * (ndu/2)
        x = np.hstack((datax, tp))

        # lets add just pure normal to it
        x = np.vstack((x, np.random.normal(size=x.shape))).T
        for distPValue in (DistPValue(), DistPValue(fpp=0.05)):
            result = distPValue(x)
            self.failUnless((result>=0).all)
            self.failUnless((result<=1).all)

        if cfg.getboolean('tests', 'labile', default='yes'):
            self.failUnless(distPValue.ca.positives_recovered[0] > 10)
            self.failUnless((np.array(distPValue.ca.positives_recovered) +
                             np.array(distPValue.ca.nulldist_number) == ndb + ndu).all())
            self.failUnlessEqual(distPValue.ca.positives_recovered[1], 0)
Beispiel #23
0
    def __init__(self, queryengine, roi_ids=None, nproc=None, **kwargs):
        """
        Parameters
        ----------
        queryengine : QueryEngine
          Engine to use to discover the "neighborhood" of each feature.
          See :class:`~mvpa.misc.neighborhood.QueryEngine`.
        roi_ids : None or list(int) or str
          List of feature ids (not coordinates) the shall serve as ROI seeds
          (e.g. sphere centers). Alternatively, this can be the name of a
          feature attribute of the input dataset, whose non-zero values
          determine the feature ids. By default all features will be used.
        nproc : None or int
          How many processes to use for computation.  Requires `pprocess`
          external module.  If None -- all available cores will be used.
        **kwargs
          In addition this class supports all keyword arguments of its
          base-class :class:`~mvpa.measures.base.Measure`.
      """
        Measure.__init__(self, **kwargs)

        if nproc > 1 and not externals.exists('pprocess'):
            raise RuntimeError("The 'pprocess' module is required for "
                               "multiprocess searchlights. Please either "
                               "install python-pprocess, or reduce `nproc` "
                               "to 1 (got nproc=%i)" % nproc)

        self._queryengine = queryengine
        if roi_ids is not None and not isinstance(roi_ids, str) \
                and not len(roi_ids):
            raise ValueError, \
                  "Cannot run searchlight on an empty list of roi_ids"
        self.__roi_ids = roi_ids
        self.nproc = nproc
Beispiel #24
0
    def test_dist_p_value(self):
        """Basic testing of DistPValue"""
        if not externals.exists('scipy'):
            return
        ndb = 200
        ndu = 20
        nperd = 2
        pthr = 0.05
        Nbins = 400

        # Lets generate already normed data (on sphere) and add some nonbogus features
        datau = (np.random.normal(size=(nperd, ndb)))
        dist = np.sqrt((datau * datau).sum(axis=1))

        datas = (datau.T / dist.T).T
        tn = datax = datas[0, :]
        dataxmax = np.max(np.abs(datax))

        # now lets add true positive features
        tp = [-dataxmax * 1.1] * (ndu/2) + [dataxmax * 1.1] * (ndu/2)
        x = np.hstack((datax, tp))

        # lets add just pure normal to it
        x = np.vstack((x, np.random.normal(size=x.shape))).T
        for distPValue in (DistPValue(), DistPValue(fpp=0.05)):
            result = distPValue(x)
            self.failUnless((result>=0).all)
            self.failUnless((result<=1).all)

        if cfg.getboolean('tests', 'labile', default='yes'):
            self.failUnless(distPValue.ca.positives_recovered[0] > 10)
            self.failUnless((np.array(distPValue.ca.positives_recovered) +
                             np.array(distPValue.ca.nulldist_number) == ndb + ndu).all())
            self.failUnless(distPValue.ca.positives_recovered[1] == 0)
Beispiel #25
0
def skip_if_no_external(dep, ver_dep=None, min_version=None, max_version=None):
    """Raise SkipTest if external is missing

    Parameters
    ----------
    dep : string
      Name of the external
    ver_dep : string, optional
      If for version checking use some different key, e.g. shogun:rev.
      If not specified, `dep` will be used.
    min_version : None or string or tuple
      Minimal required version
    max_version : None or string or tuple
      Maximal required version
    """

    if not externals.exists(dep):
        raise SkipTest, \
              "External %s is not present thus tests battery skipped" % dep

    if ver_dep is None:
        ver_dep = dep

    if min_version is not None and externals.versions[ver_dep] < min_version:
        raise SkipTest, \
              "Minimal version %s of %s is required. Present version is %s" \
              ". Test was skipped." \
              % (min_version, ver_dep, externals.versions[ver_dep])

    if max_version is not None and externals.versions[ver_dep] > max_version:
        raise SkipTest, \
              "Maximal version %s of %s is required. Present version is %s" \
              ". Test was skipped." \
              % (min_version, ver_dep, externals.versions[ver_dep])
Beispiel #26
0
def skip_if_no_external(dep, ver_dep=None, min_version=None, max_version=None):
    """Raise SkipTest if external is missing

    Parameters
    ----------
    dep : string
      Name of the external
    ver_dep : string, optional
      If for version checking use some different key, e.g. shogun:rev.
      If not specified, `dep` will be used.
    min_version : None or string or tuple
      Minimal required version
    max_version : None or string or tuple
      Maximal required version
    """

    if not externals.exists(dep):
        raise SkipTest, \
              "External %s is not present thus tests battery skipped" % dep

    if ver_dep is None:
        ver_dep = dep

    if min_version is not None and externals.versions[ver_dep] < min_version:
        raise SkipTest, \
              "Minimal version %s of %s is required. Present version is %s" \
              ". Test was skipped." \
              % (min_version, ver_dep, externals.versions[ver_dep])

    if max_version is not None and externals.versions[ver_dep] > max_version:
        raise SkipTest, \
              "Maximal version %s of %s is required. Present version is %s" \
              ". Test was skipped." \
              % (min_version, ver_dep, externals.versions[ver_dep])
Beispiel #27
0
    def testBinds(self):
        ds = normalFeatureDataset()
        ds_data = ds.samples.copy()
        ds_chunks = ds.chunks.copy()
        self.failUnless(N.all(ds.samples == ds_data)) # sanity check

        funcs = ['zscore', 'coarsenChunks']
        if externals.exists('scipy'):
            funcs.append('detrend')

        for f in funcs:
            eval('ds.%s()' % f)
            self.failUnless(N.any(ds.samples != ds_data) or
                            N.any(ds.chunks != ds_chunks),
                msg="We should have modified original dataset with %s" % f)
            ds.samples = ds_data.copy()
            ds.chunks = ds_chunks.copy()

        # and some which should just return results
        for f in ['aggregateFeatures', 'removeInvariantFeatures',
                  'getSamplesPerChunkLabel']:
            res = eval('ds.%s()' % f)
            self.failUnless(res is not None,
                msg='We should have got result from function %s' % f)
            self.failUnless(N.all(ds.samples == ds_data),
                msg="Function %s should have not modified original dataset" % f)
Beispiel #28
0
    def __init__(self, normalizer_cls=None, normalizer_args=None, **kwargs):
        """
        Parameters
        ----------
        normalizer_cls : sg.Kernel.CKernelNormalizer
          Class to use as a normalizer for the kernel.  Will be instantiated
          upon compute().  Only supported for shogun >= 0.6.5.
          By default (if left None) assigns IdentityKernelNormalizer to assure no
          normalization.
        normalizer_args : None or list
          If necessary, provide a list of arguments for the normalizer.
        """
        SGKernel.__init__(self, **kwargs)
        if (normalizer_cls is not None) and (versions['shogun:rev'] < 3377):
            raise ValueError, \
               "Normalizer specification is supported only for sg >= 0.6.5. " \
               "Please upgrade shogun python modular bindings."

        if normalizer_cls is None and exists('sg ge 0.6.5'):
            normalizer_cls = sgk.IdentityKernelNormalizer
        self._normalizer_cls = normalizer_cls

        if normalizer_args is None:
            normalizer_args = []
        self._normalizer_args = normalizer_args
Beispiel #29
0
def save(dataset, destination, name=None, compression=None):
    """Save Dataset into HDF5 file

    Parameters
    ----------
    dataset : `Dataset`
    destination : `h5py.highlevel.File` or str
    name : str, optional
    compression : None or int or {'gzip', 'szip', 'lzf'}, optional
      Level of compression for gzip, or another compression strategy.
    """
    if not externals.exists('h5py'):
        raise RuntimeError("Missing 'h5py' package -- saving is not possible.")

    import h5py
    from mvpa.base.hdf5 import obj2hdf

    # look if we got an hdf file instance already
    if isinstance(destination, h5py.highlevel.File):
        own_file = False
        hdf = destination
    else:
        own_file = True
        hdf = h5py.File(destination, 'w')

    obj2hdf(hdf, dataset, name, compression=compression)

    # if we opened the file ourselves we close it now
    if own_file:
        hdf.close()
    return
Beispiel #30
0
    def _call(self, dataset):
        """Perform the ROI search.
        """
        # local binding
        nproc = self.nproc

        if nproc is None and externals.exists('pprocess'):
            import pprocess
            try:
                nproc = pprocess.get_number_of_cores() or 1
            except AttributeError:
                warning("pprocess version %s has no API to figure out maximal "
                        "number of cores. Using 1"
                        % externals.versions['pprocess'])
                nproc = 1
        # train the queryengine
        self._queryengine.train(dataset)

        # decide whether to run on all possible center coords or just a provided
        # subset
        if isinstance(self.__roi_ids, str):
            roi_ids = dataset.fa[self.__roi_ids].value.nonzero()[0]
        elif self.__roi_ids is not None:
            roi_ids = self.__roi_ids
            # safeguard against stupidity
            if __debug__:
                if max(roi_ids) >= dataset.nfeatures:
                    raise IndexError, \
                          "Maximal center_id found is %s whenever given " \
                          "dataset has only %d features" \
                          % (max(roi_ids), dataset.nfeatures)
        else:
            roi_ids = np.arange(dataset.nfeatures)

        # pass to subclass
        results, roi_sizes = self._sl_call(dataset, roi_ids, nproc)

        if not roi_sizes is None:
            self.ca.roi_sizes = roi_sizes

        if 'mapper' in dataset.a:
            # since we know the space we can stick the original mapper into the
            # results as well
            if self.__roi_ids is None:
                results.a['mapper'] = copy.copy(dataset.a.mapper)
            else:
                # there is an additional selection step that needs to be
                # expressed by another mapper
                mapper = copy.copy(dataset.a.mapper)
                mapper.append(StaticFeatureSelection(roi_ids,
                                                     dshape=dataset.shape[1:]))
                results.a['mapper'] = mapper

        # charge state
        self.ca.raw_results = results

        # return raw results, base-class will take care of transformations
        return results
Beispiel #31
0
    def _call(self, dataset, labels=None):
        # This code is based on SciPy's stats.f_oneway()
        # Copyright (c) Gary Strangman.  All rights reserved
        # License: BSD
        #
        # However, it got tweaked and optimized to better fit into PyMVPA.

        # number of groups
        if labels is None:
            labels = dataset.targets

        ul = np.unique(labels)

        na = len(ul)
        bign = float(dataset.nsamples)
        alldata = dataset.samples

        # total squares of sums
        sostot = np.sum(alldata, axis=0)
        sostot *= sostot
        sostot /= bign

        # total sum of squares
        sstot = np.sum(alldata * alldata, axis=0) - sostot

        # between group sum of squares
        ssbn = 0
        for l in ul:
            # all samples for the respective label
            d = alldata[labels == l]
            sos = np.sum(d, axis=0)
            sos *= sos
            ssbn += sos / float(len(d))

        ssbn -= sostot
        # within
        sswn = sstot - ssbn

        # degrees of freedom
        dfbn = na-1
        dfwn = bign - na

        # mean sums of squares
        msb = ssbn / float(dfbn)
        msw = sswn / float(dfwn)
        f = msb / msw
        # assure no NaNs -- otherwise it leads instead of
        # sane unittest failure (check of NaNs) to crazy
        #   File "mtrand.pyx", line 1661, in mtrand.shuffle
        #  TypeError: object of type 'numpy.int64' has no len()
        # without any sane backtrace
        f[np.isnan(f)] = 0

        if externals.exists('scipy'):
            from scipy.stats import fprob
            return Dataset(f[np.newaxis], fa={'fprob': fprob(dfbn, dfwn, f)})
        else:
            return Dataset(f[np.newaxis])
Beispiel #32
0
    def _acquire_externals(self, out):
        # Test and list all dependencies:
        sdeps = {True: [], False: [], 'Error': []}
        for dep in sorted(externals._KNOWN):
            try:
                sdeps[externals.exists(dep, force=False)] += [dep]
            except:
                sdeps['Error'] += [dep]
        out.write('EXTERNALS:\n')
        out.write(' Present:       %s\n' % ', '.join(sdeps[True]))
        out.write(' Absent:        %s\n' % ', '.join(sdeps[False]))
        if len(sdeps['Error']):
            out.write(' Errors in determining: %s\n' %
                      ', '.join(sdeps['Error']))

        SV = ('.__version__', )  # standard versioning
        out.write(' Versions of critical externals:\n')
        # First the ones known to externals,
        # TODO: make all of them set in externals.versions
        for k, v in externals.versions.iteritems():
            out.write('  %-12s: %s\n' % (k, str(v)))
        for e, mname, fs in (
            ('ctypes', None, SV),
            ('matplotlib', None, SV),
            ('lxml', None, ('.etree.__version__', )),
            ('nifti', None, SV),
            ('numpy', None, SV),
            ('openopt', 'openopt', SV),
            ('openopt', 'scikits.openopt', ('.openopt.__version__', )),
            ('pywt', None, SV),
                #('rpy', None, ('.rpy_version',)),
            ('shogun', None, ('.Classifier.Version_get_version_release()', )),
        ):
            try:
                if not externals.exists(e):
                    continue  #sver = 'not present'
                else:
                    if mname is None:
                        mname = e
                    m = __import__(mname)
                    svers = [eval('m%s' % (f, )) for f in fs]
                    sver = ' '.join(svers)
            except Exception, exc:
                sver = 'failed to query due to "%s"' % str(exc)
            out.write('  %-12s: %s\n' % (e, sver))
Beispiel #33
0
    def _wm_reverse(self, data):
        if __debug__:
            debug('MAP', "Converting signal back using DWP")

        if self.__level is None:
            raise NotImplementedError
        else:
            if not externals.exists('pywt wp reconstruct'):
                raise NotImplementedError, \
                      "Reconstruction for a single level for versions of " \
                      "pywt < 0.1.7 (revision 103) is not supported"
            if not externals.exists('pywt wp reconstruct fixed'):
                warning("%s: Reverse mapping with this version of 'pywt' might "
                        "result in incorrect data in the tails of the signal. "
                        "Please check for an update of 'pywt', or be careful "
                        "when interpreting the edges of the reverse mapped "
                        "data." % self.__class__.__name__)
            return self.__reverse_single_level(data)
Beispiel #34
0
    def _call(self, dataset):
        # This code is based on SciPy's stats.f_oneway()
        # Copyright (c) Gary Strangman.  All rights reserved
        # License: BSD
        #
        # However, it got tweaked and optimized to better fit into PyMVPA.

        # number of groups
        targets_sa = dataset.sa[self._targets_attr]
        labels = targets_sa.value
        ul = targets_sa.unique

        na = len(ul)
        bign = float(dataset.nsamples)
        alldata = dataset.samples

        # total squares of sums
        sostot = np.sum(alldata, axis=0)
        sostot *= sostot
        sostot /= bign

        # total sum of squares
        sstot = np.sum(alldata * alldata, axis=0) - sostot

        # between group sum of squares
        ssbn = 0
        for l in ul:
            # all samples for the respective label
            d = alldata[labels == l]
            sos = np.sum(d, axis=0)
            sos *= sos
            ssbn += sos / float(len(d))

        ssbn -= sostot
        # within
        sswn = sstot - ssbn

        # degrees of freedom
        dfbn = na - 1
        dfwn = bign - na

        # mean sums of squares
        msb = ssbn / float(dfbn)
        msw = sswn / float(dfwn)
        f = msb / msw
        # assure no NaNs -- otherwise it leads instead of
        # sane unittest failure (check of NaNs) to crazy
        #   File "mtrand.pyx", line 1661, in mtrand.shuffle
        #  TypeError: object of type 'numpy.int64' has no len()
        # without any sane backtrace
        f[np.isnan(f)] = 0

        if externals.exists('scipy'):
            from scipy.stats import fprob
            return Dataset(f[np.newaxis], fa={'fprob': fprob(dfbn, dfwn, f)})
        else:
            return Dataset(f[np.newaxis])
Beispiel #35
0
    def _acquire_externals(self, out):
        # Test and list all dependencies:
        sdeps = {True: [], False: [], 'Error': []}
        for dep in sorted(externals._KNOWN):
            try:
                sdeps[externals.exists(dep, force=False)] += [dep]
            except:
                sdeps['Error'] += [dep]
        out.write('EXTERNALS:\n')
        out.write(' Present:       %s\n' % ', '.join(sdeps[True]))
        out.write(' Absent:        %s\n' % ', '.join(sdeps[False]))
        if len(sdeps['Error']):
            out.write(' Errors in determining: %s\n' % ', '.join(sdeps['Error']))

        SV = ('.__version__', )              # standard versioning
        out.write(' Versions of critical externals:\n')
        # First the ones known to externals,
        # TODO: make all of them set in externals.versions
        for k, v in externals.versions.iteritems():
            out.write('  %-12s: %s\n' % (k, str(v)))
        for e, mname, fs in (
            ('ctypes', None, SV),
            ('matplotlib', None, SV),
            ('lxml', None, ('.etree.__version__',)),
            ('nifti', None, SV),
            ('numpy', None, SV),
            ('openopt', 'openopt', SV),
            ('openopt', 'scikits.openopt', ('.openopt.__version__',)),
            ('pywt', None, SV),
            #('rpy', None, ('.rpy_version',)),
            ('shogun', None, ('.Classifier.Version_get_version_release()',)),
            ):
            try:
                if not externals.exists(e):
                    continue #sver = 'not present'
                else:
                    if mname is None:
                        mname = e
                    m = __import__(mname)
                    svers = [eval('m%s' % (f,)) for f in fs]
                    sver = ' '.join(svers)
            except Exception, exc:
                sver = 'failed to query due to "%s"' % str(exc)
            out.write('  %-12s: %s\n' % (e, sver))
Beispiel #36
0
    def _wm_reverse(self, data):
        if __debug__:
            debug('MAP', "Converting signal back using DWP")

        if self.__level is None:
            raise NotImplementedError
        else:
            if not externals.exists('pywt wp reconstruct'):
                raise NotImplementedError, \
                      "Reconstruction for a single level for versions of " \
                      "pywt < 0.1.7 (revision 103) is not supported"
            if not externals.exists('pywt wp reconstruct fixed'):
                warning(
                    "%s: Reverse mapping with this version of 'pywt' might "
                    "result in incorrect data in the tails of the signal. "
                    "Please check for an update of 'pywt', or be careful "
                    "when interpreting the edges of the reverse mapped "
                    "data." % self.__class__.__name__)
            return self.__reverse_single_level(data)
Beispiel #37
0
    def __init__(self, gnb, splitter, qe, errorfx=mean_mismatch_error,
                 indexsum=None, **kwargs):
        """Initialize a GNBSearchlight

        Parameters
        ----------
        gnb : `GNB`
          `GNB` classifier as the specification of what GNB parameters
          to use. Instance itself isn't used.
        splitter : `Splitter`
          `Splitter` to use to compute the error.
        errorfx : func, optional
          Functor that computes a scalar error value from the vectors of
          desired and predicted values (e.g. subclass of `ErrorFunction`)
        indexsum : ('sparse', 'fancy'), optional
          What use to compute sums over arbitrary columns.  'fancy'
          corresponds to regular fancy indexing over columns, whenever
          in 'sparse', produce of sparse matrices is used (usually
          faster, so is default if `scipy` is available.
        """

        # init base class first
        BaseSearchlight.__init__(self, qe, **kwargs)

        self._errorfx = errorfx
        self._splitter = splitter
        self._gnb = gnb

        if indexsum is None:
            if externals.exists('scipy'):
                indexsum = 'sparse'
            else:
                indexsum = 'fancy'
        else:
            if indexsum == 'sparse' and not externals.exists('scipy'):
                warning("Scipy.sparse isn't available so taking 'fancy' as "
                        "'indexsum' method.")
                indexsum = 'fancy'
        self._indexsum = indexsum

        if not self._nproc in (None, 1):
            raise NotImplementedError, "For now only nproc=1 (or None for " \
                  "autodetection) is supported by GNBSearchlight"
Beispiel #38
0
def _get_nifti_data(nim):
    """Convenience function to extract the data array from a NiftiImage

    This function will make use of advanced features of PyNIfTI to prevent
    unnecessary copying if a sufficent version is available.
    """
    if externals.exists("nifti ge 0.20090205.1"):
        return nim.data
    else:
        return nim.asarray()
Beispiel #39
0
    def testSimpleWP1Level(self):
        """
        """

        ds = datasets["uni2large"]
        d2d = ds.samples
        ws = 50  # size of timeline for wavelet
        sp = (N.arange(ds.nsamples - ws * 2) + ws)[:4]

        # create 3D instance (samples x timepoints x channels)
        bcm = BoxcarMapper(sp, ws)
        d3d = bcm(d2d)

        # use wavelet mapper
        wdm = WaveletPacketMapper(level=2, wavelet="sym2")
        d3d_wd = wdm(d3d)

        # Check dimensionality
        d3d_wds, d3ds = d3d_wd.shape, d3d.shape
        self.failUnless(len(d3d_wds) == len(d3ds) + 1)
        self.failUnless(d3d_wds[1] * d3d_wds[2] >= d3ds[1])
        self.failUnless(d3d_wds[0] == d3ds[0])
        self.failUnless(d3d_wds[-1] == d3ds[-1])
        # print d2d.shape, d3d.shape, d3d_wd.shape

        if externals.exists("pywt wp reconstruct"):
            # Test reverse -- should be identical
            # we can do reverse only for DWT
            d3d_rev = wdm.reverse(d3d_wd)

            # inverse transform might be not exactly as the
            # input... but should be very close ;-)
            self.failUnlessEqual(d3d_rev.shape, d3d.shape, msg="Shape should be the same after iDWT")

            diff = N.linalg.norm(d3d - d3d_rev)
            ornorm = N.linalg.norm(d3d)

            if externals.exists("pywt wp reconstruct fixed"):
                self.failUnless(diff / ornorm < 1e-10)
        else:
            self.failUnlessRaises(NotImplementedError, wdm.reverse, d3d_wd)
Beispiel #40
0
def _get_data_form_pynifti_img(nim):
    """Convenience function to extract the data array from a NiftiImage

    This function will make use of advanced features of PyNIfTI to prevent
    unnecessary copying if a sufficent version is available.
    """
    if externals.exists('nifti ge 0.20090205.1'):
        data = nim.data
    else:
        data = nim.asarray()
    # we want the data to be x,y,z,t
    return data.T
Beispiel #41
0
def _get_data_form_pynifti_img(nim):
    """Convenience function to extract the data array from a NiftiImage

    This function will make use of advanced features of PyNIfTI to prevent
    unnecessary copying if a sufficent version is available.
    """
    if externals.exists('nifti ge 0.20090205.1'):
        data = nim.data
    else:
        data = nim.asarray()
    # we want the data to be x,y,z,t
    return data.T
Beispiel #42
0
 def testEventDatasetExtended(self):
     if not externals.exists('nifti'):
         return
     from mvpa.datasets.nifti import ERNiftiDataset
     try:
         ds = ERNiftiDataset(
             samples=os.path.join(pymvpa_dataroot, 'bold.nii.gz'),
             mask=os.path.join(pymvpa_dataroot, 'mask.nii.gz'),
             events=[Event(onset=1,duration=5,label=1,chunk=1)],
             evconv=True, tr=2.0)
     except ValueError, e:
         self.fail("Failed to create a simple ERNiftiDataset from a volume"
                   " with only 1 slice. Exception was:\n %s" % e)
Beispiel #43
0
    def figures(self, *args, **kwargs):
        """Adds all present figures at once

        If called twice, it might add the same figure multiple times,
        so make sure to close all previous figures if you use
        figures() multiple times
        """
        if externals.exists('pylab', raise_=True):
            import pylab as pl
        figs = pl.matplotlib._pylab_helpers.Gcf.figs
        if __debug__ and not self in debug.handlers:
            debug('REP', "Saving all %d present figures" % len(figs))
        for fid, f in figs.iteritems():
            self.figure(f.canvas.figure, *args, **kwargs)
Beispiel #44
0
def _data2img(data, hdr=None, imgtype=None):
    # input data is t,x,y,z
    if externals.exists('nibabel'):
        # let's try whether we can get it done with nibabel
        import nibabel
        if imgtype is None:
            # default is NIfTI1
            itype = nibabel.Nifti1Image
        else:
            itype = imgtype
        if issubclass(itype, nibabel.spatialimages.SpatialImage) \
           and (hdr is None or hasattr(hdr, 'get_data_dtype')):
            # we can handle the desired image type and hdr with nibabel
            # use of `None` for the affine should cause to pull it from
            # the header
            return itype(_get_xyzt_shaped(data), None, hdr)
        # otherwise continue and see if there is hope ....
    if externals.exists('nifti'):
        # maybe pynifti can help
        import nifti
        if imgtype is None:
            itype = nifti.NiftiImage
        else:
            itype = imgtype
        if issubclass(itype, nifti.NiftiImage) \
           and (hdr is None or isinstance(hdr, dict)):
            # pynifti wants it transposed
            return itype(_get_xyzt_shaped(data).T, hdr)

    raise RuntimeError("Cannot convert data to an MRI image "
                       "(backends: nibabel(%s), pynifti(%s). Got hdr='%s', "
                       "imgtype='%s'."
                       % (externals.exists('nibabel'),
                          externals.exists('nifti'),
                          hdr,
                          imgtype))
Beispiel #45
0
    def test_simple_wp1_level(self):
        """
        """

        ds = datasets['uni2large']
        d2d = ds.samples
        ws = 50  # size of timeline for wavelet
        sp = (np.arange(ds.nsamples - ws * 2) + ws)[:4]

        # create 3D instance (samples x timepoints x channels)
        bcm = BoxcarMapper(sp, ws)
        d3d = bcm(d2d)

        # use wavelet mapper
        wdm = WaveletPacketMapper(level=2, wavelet='sym2')
        d3d_wd = wdm(d3d)

        # Check dimensionality
        d3d_wds, d3ds = d3d_wd.shape, d3d.shape
        self.failUnless(len(d3d_wds) == len(d3ds) + 1)
        self.failUnless(d3d_wds[1] * d3d_wds[2] >= d3ds[1])
        self.failUnless(d3d_wds[0] == d3ds[0])
        self.failUnless(d3d_wds[-1] == d3ds[-1])
        #print d2d.shape, d3d.shape, d3d_wd.shape

        if externals.exists('pywt wp reconstruct'):
            # Test reverse -- should be identical
            # we can do reverse only for DWT
            d3d_rev = wdm.reverse(d3d_wd)

            # inverse transform might be not exactly as the
            # input... but should be very close ;-)
            self.failUnlessEqual(d3d_rev.shape,
                                 d3d.shape,
                                 msg="Shape should be the same after iDWT")

            diff = np.linalg.norm(d3d - d3d_rev)
            ornorm = np.linalg.norm(d3d)

            skip_if_no_external('pywt wp reconstruct fixed')
            self.failUnless(diff / ornorm < 1e-10)
        else:
            self.failUnlessRaises(NotImplementedError, wdm.reverse, d3d_wd)
Beispiel #46
0
def run_tests_using_nose(limit=None, verbosity=1, exit_=False):
    """Run nose-based tests -- really really silly way, just to get started

    TODO: just switch to using numpy.testing framework, for that
          unittests need to be cleaned and unified first
    """
    nosetests = collect_nose_tests(verbosity=verbosity)

    if not externals.exists('nose'):
        warning("You do not have python-nose installed.  Some unittests were "
                "skipped: %s" % (', '.join(nosetests)))
        return

    from nose import main
    import nose
    import nose.config

    tests = collect_unit_tests(verbosity=verbosity) + nosetests

    config = nose.config.Config(verbosity=verbosity,
                                plugins=nose.plugins.DefaultPluginManager())
    if limit is None:
        # Lets see if we aren't missing any:
        if verbosity:
            import os, glob
            testfiles = glob.glob('%s%stest_*.py' %
                                  (os.path.dirname(__file__), os.path.sep))
            not_tested = set([os.path.basename(f) for f in testfiles]) \
                         - set(['%s.py' % f for f in tests])
            if len(not_tested):
                print(
                    "T: Warning -- following test files were found but will "
                    "not be tested: %s" % ', '.join(not_tested))
        config.testNames = ['mvpa.tests.' + nt for nt in tests]
    else:
        config.testNames = [
            'mvpa.tests.' + nt for nt in tests if nt[5:] in limit
        ]

    # run the tests
    _ = main(defaultTest=(), config=config, exit=exit_)
Beispiel #47
0
    def __init__(self, kernel=None, **kwargs):
        """Initialize a GPR regression analysis.

        Parameters
        ----------
        kernel : Kernel
          a kernel object defining the covariance between instances.
          (Defaults to SquaredExponentialKernel if None in arguments)
        """
        # init base class first
        Classifier.__init__(self, **kwargs)

        # It does not make sense to calculate a confusion matrix for a GPR
        # XXX it does ;) it will be a RegressionStatistics actually ;-)
        # So if someone desires -- let him have it
        # self.ca.enable('training_confusion', False)

        # set kernel:
        if kernel is None:
            kernel = SquaredExponentialKernel()
            debug(
                "GPR",
                "No kernel was provided, falling back to default: %s" % kernel)
        self.__kernel = kernel

        # append proper clf_internal depending on the kernel
        # TODO: add "__tags__" to kernels since the check
        #       below does not scale
        if isinstance(kernel, GeneralizedLinearKernel) or \
           isinstance(kernel, LinearKernel):
            self.__tags__ += ['linear']
        else:
            self.__tags__ += ['non-linear']
            if externals.exists('openopt'):
                self.__tags__ += ['has_sensitivity']

        # No need to initialize conditional attributes. Unless they got set
        # they would raise an exception self.predicted_variances =
        # None self.log_marginal_likelihood = None
        self._init_internals()
        pass
Beispiel #48
0
        def test_custom_sg(self):
            lk = sgK.LinearSGKernel()
            cl = sgK.CustomSGKernel(sgK.sgk.LinearKernel)
            poly = sgK.PolySGKernel()
            poly_params = [('order', 2), ('inhomogenous', True)]
            if not exists('sg ge 0.6.5'):
                poly_params += [('use_normalization', False)]

            custom = sgK.CustomSGKernel(sgK.sgk.PolyKernel,
                                        kernel_params=poly_params)

            d = np.random.randn(253, 52)
            lk.compute(d)
            cl.compute(d)
            poly.compute(d)
            custom.compute(d)

            self.failUnless(np.all(lk.as_np()._k == cl.as_np()._k),
                            'CustomSGKernel does not agree with Linear')
            self.failUnless(np.all(poly.as_np()._k == custom.as_np()._k),
                            'CustomSGKernel does not agree with Poly')
Beispiel #49
0
def _img2data(src):
    excpt = None
    if externals.exists('nibabel'):
        # let's try whether we can get it done with nibabel
        import nibabel
        if isinstance(src, str):
            # filename
            try:
                img = nibabel.load(src)
            except nibabel.spatialimages.ImageFileError, excpt:
                # nibabel has some problem, but we might be lucky with
                # pynifti below. if not, we have stored the exception
                # and raise it below
                img = None
                pass
        else:
            # assume this is an image already
            img = src
        if isinstance(img, nibabel.spatialimages.SpatialImage):
            # nibabel image, dissect and return pieces
            return _get_txyz_shaped(img.get_data()), img.get_header()
Beispiel #50
0
    def test_anova(self):
        """Do some extended testing of OneWayAnova

        in particular -- compound estimation
        """

        m = OneWayAnova()  # default must be not compound ?
        mc = CompoundOneWayAnova()
        ds = datasets['uni2medium']

        # For 2 labels it must be identical for both and equal to
        # simple OneWayAnova
        a, ac = m(ds), mc(ds)

        self.failUnless(a.shape == (1, ds.nfeatures))
        self.failUnless(ac.shape == (len(ds.UT), ds.nfeatures))

        assert_array_equal(ac[0], ac[1])
        assert_array_equal(a, ac[1])

        # check for p-value attrs
        if externals.exists('scipy'):
            assert_true('fprob' in a.fa.keys())
            assert_equal(len(ac.fa), len(ac))

        ds = datasets['uni4large']
        ac = mc(ds)
        if cfg.getboolean('tests', 'labile', default='yes'):
            # All non-bogus features must be high for a corresponding feature
            self.failUnless(
                (ac.samples[np.arange(4),
                            np.array(ds.a.nonbogus_features)] >= 1).all())
        # All features should have slightly but different CompoundAnova
        # values. I really doubt that there will be a case when this
        # test would fail just to being 'labile'
        self.failUnless(np.max(np.std(ac, axis=1)) > 0,
                        msg='In compound anova, we should get different'
                        ' results for different labels. Got %s' % ac)
Beispiel #51
0
class PolySGKernel(_BasicSGKernel):
    """Polynomial kernel: K(a,b) = (a*b.T + c)**degree
    c is 1 if and only if 'inhomogenous' is True
    """
    __kernel_cls__ = sgk.PolyKernel
    __kernel_name__ = 'poly'
    __kp_order__ = ('degree', 'inhomogenous')
    degree = Parameter(2,
                       allowedtype=int,
                       doc="Polynomial order of the kernel")
    inhomogenous = Parameter(True,
                             allowedtype=bool,
                             doc="Whether +1 is added within the expression")

    if not exists('sg ge 0.6.5'):

        use_normalization = Parameter(False,
                                      allowedtype=bool,
                                      doc="Optional normalization")
        __kp_order__ = __kp_order__ + ('use_normalization', )

    def __init__(self, **kwargs):
        # Necessary for proper docstring construction
        _BasicSGKernel.__init__(self, **kwargs)
Beispiel #52
0
# vi: set ft=python sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
#   See COPYING file distributed along with the PyMVPA package for the
#   copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
"""Import griddata with preference to the version from matplotlib
"""

__docformat__ = 'restructuredtext'

import sys
from mvpa.base import externals

if externals.exists('griddata', raise_=True):
    if __debug__:
        from mvpa.base import debug

    try:
        if sys.version_info[:2] >= (2, 5):
            # enforce absolute import
            griddata = __import__('griddata', globals(), locals(), [],
                                  0).griddata
        else:
            # little trick to be able to import 'griddata' package (which
            # has same name)
            oldname = __name__
            # crazy name with close to zero possibility to cause whatever
            __name__ = 'iaugf9zrkjsbdv91'
            try:
Beispiel #53
0
from mvpa.base import externals
# XXX local rename is due but later on
from mvpa.base.collections import Collection as BaseCollection

if __debug__:
    from mvpa.base import debug
    # XXX
    # To debug references on top level -- useful to keep around for now,
    # don't remove until refactoring is complete
    import sys
    _debug_references = 'ATTRREFER' in debug.active
    _debug_shits = []  # remember all to don't complaint twice
    import traceback

_in_ipython = externals.exists('running ipython env')
# Separators around definitions, needed for ReST, but bogus for
# interactive sessions
_def_sep = ('`', '')[int(_in_ipython)]

_object_getattribute = object.__getattribute__
_object_setattr = object.__setattr__

###################################################################
# Collections
#
# TODO:
#  - refactor: use base.collections and unify this to that
#  - minimize interface

Beispiel #54
0
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
#   See COPYING file distributed along with the PyMVPA package for the
#   copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
"""Various utilities to help plotting"""

__docformat__ = 'restructuredtext'

from mvpa.base import externals

externals.exists("pylab", raise_=True)
import pylab as pl

interactive_backends = ['GTKAgg', 'TkAgg']

# Backends can be modified only prior importing matplotlib, so it is
# safe to just assign current backend right here
mpl_backend = pl.matplotlib.get_backend()
mpl_backend_isinteractive = mpl_backend in interactive_backends

if mpl_backend_isinteractive:
    Pioff = pl.ioff
    def Pion():
        """Little helper to call pl.draw() and pl.ion() if backend is interactive
        """
        pl.draw()
        pl.ion()
Beispiel #55
0
# vi: set ft=python sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
#   See COPYING file distributed along with the PyMVPA package for the
#   copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
"""Mapper for data detrending."""

__docformat__ = 'restructuredtext'

import numpy as np
from operator import isSequenceType

from mvpa.base import externals
if externals.exists('scipy', raise_=True):
    # if we construct the polynomials ourselves, we wouldn't need scipy here
    from scipy.special import legendre

from mvpa.base.dochelpers import _str, borrowkwargs
from mvpa.mappers.base import Mapper


class PolyDetrendMapper(Mapper):
    """Mapper for regression-based removal of polynomial trends.

    Noteworthy features are the possibility for chunk-wise detrending, optional
    regressors, and the ability to use positional information about the samples
    from the dataset.

    Any sample attribute from the to be mapped dataset can be used to define
Beispiel #56
0
"""Creating simple PDF reports using reportlab
"""

__docformat__ = 'restructuredtext'

import os
from datetime import datetime

import mvpa
from mvpa.base import externals, verbose
from mvpa.base.dochelpers import borrowkwargs

if __debug__:
    from mvpa.base import debug

if externals.exists('reportlab', raise_=True):
    import reportlab as rl
    from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, Image
    from reportlab.lib.styles import getSampleStyleSheet
    from reportlab.lib.units import inch

    # Actually current reportlab's Image can't deal directly with .pdf images
    # Lets use png for now
    if externals.versions['reportlab'] >= '1112.2':
        _fig_ext_default = 'pdf'
    else:
        _fig_ext_default = 'png'

__all__ = ['rl', 'Report', 'escape_xml']

Beispiel #57
0
    def figure(self, fig=None, name=None, savefig_kwargs={}, **kwargs):
        """Add a figure to the report

        Parameters
        ----------
        fig : None or str or `figure.Figure`
          Figure to place into report: `str` is treated as a filename,
          `Figure` stores it into a file under directory and embeds
          into the report, and `None` takes the current figure
        savefig_kwargs : dict
          Additional keyword arguments to provide savefig with (e.g. dpi)
        **kwargs
          Passed to :class:`reportlab.platypus.Image` constructor
        """

        if externals.exists('pylab', raise_=True):
            import pylab as pl
            figure = pl.matplotlib.figure

        if fig is None:
            fig = pl.gcf()

        if isinstance(fig, figure.Figure):
            # Create directory if needed
            if not (os.path.exists(self._filename)
                    and os.path.isdir(self._filename)):
                os.makedirs(self._filename)

            # Figure out the name for image
            self.__nfigures += 1
            if name is None:
                name = 'Figure#'
            name = name.replace('#', str(self.__nfigures))

            # Save image
            fig_filename = os.path.join(self._filename,
                                        '%s.%s' % (name, self.fig_ext))
            if __debug__ and not self in debug.handlers:
                debug("REP_",
                      "Saving figure '%s' into %s" % (fig, fig_filename))

            fig.savefig(fig_filename, **savefig_kwargs)

            # adjust fig to the one to be included
            fig = fig_filename

        if __debug__ and not self in debug.handlers:
            debug("REP", "Adding figure '%s'" % fig)

        im = Image(fig, **kwargs)

        # If the inherent or provided width/height are too large -- shrink down
        imsize = (im.drawWidth, im.drawHeight)

        # Reduce the size if necessary so reportlab does not puke later on
        r = [float(d) / m for d, m in zip(imsize, self.pagesize)]
        maxr = max(r)
        if maxr > 1.0:
            if __debug__ and not self in debug.handlers:
                debug("REP_", "Shrinking figure by %.3g" % maxr)
            im.drawWidth /= maxr
            im.drawHeight /= maxr

        self._story.append(im)