def test_mwa_alt_az_za():
    """Test the mwa_alt_az_za function"""
    # obsid, alt, az, za
    tests = [(1117101752, -71.10724927808731, 145.74310748819693, 161.1072492780873),
             (1252177744, -14.709910184536241, 264.22976419794514, 104.70991018453624),
             (1247832024, 68.90133642304133, 161.50105995238945, 21.09866357695867),
             (1188439520, 60.78396503767497, 161.03537536398974, 29.216034962325033)]

    for obsid, exp_alt, exp_az, exp_za in tests:
        alt, az, za = mwa_alt_az_za(obsid)
        assert_almost_equal(alt, exp_alt, decimal=5)
        assert_almost_equal(az,  exp_az,  decimal=5)
        assert_almost_equal(za,  exp_za,  decimal=5)
Beispiel #2
0
def get_obs_metadata(obs):
    beam_meta_data = getmeta(service='obs', params={'obs_id': obs})
    channels = beam_meta_data[u'rfstreams'][u"0"][u'frequencies']
    freqs = [float(c) * 1.28 for c in channels]
    xdelays = beam_meta_data[u'rfstreams'][u"0"][u'xdelays']
    #pythodelays = beam_meta_data[u'rfstreams'][u"0"][u'xdelays']
    ydelays = beam_meta_data[u'rfstreams'][u"0"][u'ydelays']
    _, pointing_AZ, pointing_ZA = mwa_alt_az_za(obs)

    return {
        "channels": channels,
        "frequencies": freqs,
        "xdelays": xdelays,
        "ydelays": ydelays,
        "az": pointing_AZ,
        "za": pointing_ZA
    }
Beispiel #3
0
def plot_beam_pattern(obsid, obsfreq, obstime, ra, dec, cutoff=0.1):

    # extra imports from MWA_Tools to access database and beam models
    from mwa_pb import primary_beam as pb

    _az = np.linspace(0, 360, 3600)
    _za = np.linspace(0, 90, 900)
    az, za = np.meshgrid(_az, _za)

    ## TARGET TRACKING ##
    times = Time(obstime, format='gps')
    target = SkyCoord(ra, dec, unit=(u.hourangle, u.deg))
    location = EarthLocation(lat=-26.7033 * u.deg,
                             lon=116.671 * u.deg,
                             height=377.827 * u.m)

    altaz = target.transform_to(AltAz(obstime=times, location=location))
    targetAZ = altaz.az.deg
    targetZA = 90 - altaz.alt.deg
    colours = cm.viridis(np.linspace(1, 0, len(targetAZ)))

    ## MWA BEAM CALCULATIONS ##
    delays = get_common_obs_metadata(obsid)[
        4]  # x-pol and y-pol delays for obsid
    _, ptAZ, ptZA = mwa_alt_az_za(obsid)
    #ptAZ, _, ptZA = dbq.get_beam_pointing(obsid) # Az and ZA in degrees for obsid

    logger.info("obs pointing: ({0}, {1})".format(ptAZ, ptZA))

    xp, yp = pb.MWA_Tile_analytic(np.radians(za),
                                  np.radians(az),
                                  obsfreq * 1e6,
                                  delays=delays,
                                  zenithnorm=True)  #interp=True)
    pattern = np.sqrt((xp + yp) / 2.0).real  # sum to get "total intensity"
    logger.debug("Pattern: {0}".format(pattern))
    pmax = pattern.max()
    hpp = 0.5 * pmax  # half-power point
    logger.info("tile pattern maximum: {0:.3f}".format(pmax))
    logger.info("tile pattern half-max: {0:.3f}".format(hpp))
    pattern[np.where(pattern < cutoff)] = 0  # ignore everything below cutoff

    # figure out the fwhm
    fwhm_idx = np.where((pattern > 0.498 * pmax) & (pattern < 0.502 * pmax))
    fwhm_az_idx = fwhm_idx[1]
    fwhm_za_idx = fwhm_idx[0]

    # collapse beam pattern along axes
    pattern_ZAcol = pattern.mean(axis=0)
    pattern_AZcol = pattern.mean(axis=1)

    # figure out beam pattern value at target tracking points
    track_lines = []
    logger.info("beam power at target track points:")
    for ta, tz in zip(targetAZ, targetZA):
        xp, yp = pb.MWA_Tile_analytic(np.radians([[tz]]),
                                      np.radians([[ta]]),
                                      obsfreq * 1e6,
                                      delays=delays,
                                      zenithnorm=True)  #interp=False
        bp = (xp + yp) / 2
        track_lines.append(bp[0])
        logger.info("({0:.2f},{1:.2f}) = {2:.3f}".format(ta, tz, bp[0][0]))

    ## PLOTTING ##
    fig = plt.figure(figsize=(10, 8))
    gs = gridspec.GridSpec(4, 4)
    axP = plt.subplot(gs[1:, 0:3])
    axAZ = plt.subplot(gs[0, :3])
    axZA = plt.subplot(gs[1:, 3])
    axtxt = plt.subplot(gs[0, 3])

    # info text in right-hand corner axis
    axtxt.axis('off')
    infostr = """Obs ID: {0}
Frequency: {1:.2f}MHz
Beam Pmax: {2:.3f}
Beam half-Pmax: {3:.3f}
""".format(obsid, obsfreq, pmax, hpp)
    axtxt.text(0.01, 0.5, infostr, verticalalignment='center')

    logger.debug("az: {0}, za: {1}, pattern: {2}, pmax: {3}".format(
        az, za, pattern, pmax))

    # plot the actual beam patter over sky
    p = axP.contourf(az,
                     za,
                     pattern,
                     100,
                     cmap=plt.get_cmap('gist_yarg'),
                     vmax=pmax)  # plot beam contours
    axP.scatter(_az[fwhm_az_idx], _za[fwhm_za_idx], marker='.', s=1,
                color='r')  # plot the fwhm border
    axP.plot(ptAZ, ptZA, marker="+", ms=8, ls="",
             color='C0')  # plot the tile beam pointing
    for ta, tz, c in zip(targetAZ, targetZA, colours):
        axP.plot(ta, tz, marker="x", ms=8, ls="",
                 color=c)  # plot the target track through the beam
    axP.set_xlim(0, 360)
    axP.set_ylim(0, 90)
    axP.set_xticks(np.arange(0, 361, 60))
    axP.set_xlabel("Azimuth (deg)")
    axP.set_ylabel("Zenith angle (deg)")

    # setup and configure colourbar
    cbar_ax = fig.add_axes([0.122, -0.01, 0.58, 0.03])
    cbar = plt.colorbar(p,
                        cax=cbar_ax,
                        orientation='horizontal',
                        label="Zenith normalised power")
    cbar.ax.plot(hpp / pmax, [0.5], 'r.')
    for l, c in zip(track_lines, colours):
        cbar.ax.plot([l / pmax, l / pmax], [0, 1], color=c, lw=1.5)

    # plot collapsed beam patterns:
    axAZ.plot(_az, pattern_ZAcol, color='k')  # collapsed along ZA
    for ta, c in zip(targetAZ, colours):  # draw tracking points
        axAZ.axvline(ta, color=c)
    axAZ.set_xlim(0, 360)
    axAZ.set_xticks(np.arange(0, 361, 60))
    axAZ.set_xticklabels([])
    axAZ.set_yscale('log')

    axZA.plot(pattern_AZcol, _za, color='k')  # collapsed along AZ
    for tz, c in zip(targetZA, colours):  # draw tracking points
        axZA.axhline(tz, color=c)
    axZA.set_ylim(0, 90)
    axZA.set_yticklabels([])
    axZA.set_xscale('log')

    plt.savefig("{0}_{1:.2f}MHz_flattile.png".format(obsid, obsfreq),
                bbox_inches='tight')
Beispiel #4
0
    ch_offset = channels[-1] - channels[0]
    if ch_offset != nchans - 1:
        logger.error(
            "Picket fence observation - cannot combine picket fence incoherent sum data (with this script)"
        )
        sys.exit(1)

    bw = nchans * 1.28
    cfreq = (1.28 * min(channels) - 0.64) + bw / 2.0
    logger.info("Centre frequency: {0} MHz".format(cfreq))
    logger.info("Bandwidth: {0} MHz".format(bw))

    logger.info("Acquiring pointing position information")
    ra, dec = metadata[1:3]
    alt, az, za = mwa_alt_az_za(args.obsID, ra=ra, dec=dec)

    user = getpass.getuser()
    os.system("mkdir -p {ics_dir}".format(ics_dir=ics_dir))

    # TODO: this is bloody awful, surely there's a better way to do this?
    make_command = 'cd {ics_dir} && echo -e "{ics_dir}/mk_psrfits_in\n' \
                   '\n' \
                   '{obsid}\n' \
                   '\n' \
                   '{nfiles}\n' \
                   '{user}\n' \
                   '\n' \
                   '{obsid}\n' \
                   '\n' \
                   '\n' \
def get_beam_power_over_time(beam_meta_data,
                             names_ra_dec,
                             dt=296,
                             centeronly=True,
                             verbose=False,
                             option='analytic',
                             degrees=False,
                             start_time=0):
    """
    Calulates the power (gain at coordinate/gain at zenith) for each source over time.

    get_beam_power_over_time(beam_meta_data, names_ra_dec,
                             dt=296, centeronly=True, verbose=False,
                             option = 'analytic')
    Args:
        beam_meta_data: [obsid,ra, dec, time, delays,centrefreq, channels]
                        obsid metadata obtained from meta.get_common_obs_metadata
        names_ra_dec: and array in the format [[source_name, RAJ, DecJ]]
        dt: time step in seconds for power calculations (default 296)
        centeronly: only calculates for the centre frequency (default True)
        verbose: prints extra data to (default False)
        option: primary beam model [analytic, advanced, full_EE]
        start_time: the time in seconds from the begining of the observation to
                    start calculating at
    """
    obsid, _, _, time, delays, centrefreq, channels = beam_meta_data
    names_ra_dec = np.array(names_ra_dec)
    logger.info("Calculating beam power for OBS ID: {0}".format(obsid))

    starttimes = np.arange(start_time, time + start_time, dt)
    stoptimes = starttimes + dt
    stoptimes[stoptimes > time] = time
    Ntimes = len(starttimes)
    midtimes = float(obsid) + 0.5 * (starttimes + stoptimes)

    if not centeronly:
        PowersX = np.zeros((len(names_ra_dec), Ntimes, len(channels)))
        PowersY = np.zeros((len(names_ra_dec), Ntimes, len(channels)))
        # in Hz
        frequencies = np.array(channels) * 1.28e6
    else:
        PowersX = np.zeros((len(names_ra_dec), Ntimes, 1))
        PowersY = np.zeros((len(names_ra_dec), Ntimes, 1))
        if centrefreq > 1e6:
            logger.warning(
                "centrefreq is greater than 1e6, assuming input with units of Hz."
            )
            frequencies = np.array([centrefreq])
        else:
            frequencies = np.array([centrefreq]) * 1e6
    if degrees:
        RAs = np.array(names_ra_dec[:, 1], dtype=float)
        Decs = np.array(names_ra_dec[:, 2], dtype=float)
    else:
        RAs, Decs = sex2deg(names_ra_dec[:, 1], names_ra_dec[:, 2])

    if len(RAs) == 0:
        sys.stderr.write('Must supply >=1 source positions\n')
        return None
    if not len(RAs) == len(Decs):
        sys.stderr.write('Must supply equal numbers of RAs and Decs\n')
        return None
    if verbose is False:
        #Supress print statements of the primary beam model functions
        sys.stdout = open(os.devnull, 'w')
    for itime in range(Ntimes):
        # this differ's from the previous ephem_utils method by 0.1 degrees
        _, Azs, Zas = mwa_alt_az_za(midtimes[itime],
                                    ra=RAs,
                                    dec=Decs,
                                    degrees=True)
        # go from altitude to zenith angle
        theta = np.radians(Zas)
        phi = np.radians(Azs)
        for ifreq in range(len(frequencies)):
            #Decide on beam model
            if option == 'analytic':
                rX, rY = primary_beam.MWA_Tile_analytic(
                    theta,
                    phi,
                    freq=frequencies[ifreq],
                    delays=delays,
                    zenithnorm=True,
                    power=True)
            elif option == 'advanced':
                rX, rY = primary_beam.MWA_Tile_advanced(
                    theta,
                    phi,
                    freq=frequencies[ifreq],
                    delays=delays,
                    zenithnorm=True,
                    power=True)
            elif option == 'full_EE':
                rX, rY = primary_beam.MWA_Tile_full_EE(theta,
                                                       phi,
                                                       freq=frequencies[ifreq],
                                                       delays=delays,
                                                       zenithnorm=True,
                                                       power=True)
        PowersX[:, itime, ifreq] = rX
        PowersY[:, itime, ifreq] = rY
    if verbose is False:
        sys.stdout = sys.__stdout__
    Powers = 0.5 * (PowersX + PowersY)
    return Powers
Beispiel #6
0
def find_t_sys_gain(pulsar, obsid, beg=None, t_int=None, p_ra=None, p_dec=None,\
                    obs_metadata=None, query=None, trcvr="/group/mwaops/PULSAR/MWA_Trcvr_tile_56.csv"):
    """
    Finds the system temperature and gain for an observation.
    A function snippet originally written by Nick Swainston - adapted for general VCS use.

    Parameters:
    -----------
    pulsar: str
        the J name of the pulsar. e.g. J2241-5236
    obsid: int
        The observation ID. e.g. 1226406800
    beg: int
        The beginning of the observing time
    t_int: float
        The total time that the target is in the beam
    p_ra: str
        OPTIONAL - the target's right ascension
    p_dec: str
        OPTIONAL - the target's declination
    obs_metadata: list
        OPTIONAL - the array generated from mwa_metadb_utils.get_common_obs_metadata(obsid)
    query: object
        OPTIONAL - The return of the psrqpy function for this pulsar
    trcvr: str
        The location of the MWA receiver temp csv file. Default = '/group/mwaops/PULSAR/MWA_Trcvr_tile_56.csv'

    Returns:
    --------
    t_sys: float
        The system temperature
    t_sys_err: float
        The system temperature's uncertainty
    gain: float
        The system gain
    gain_err: float
        The gain's uncertainty
    """

    #get ra and dec if not supplied
    if p_ra is None or p_dec is None and query is None:
        logger.debug("Obtaining pulsar RA and Dec from ATNF")
        query = psrqpy.QueryATNF(psrs=[pulsar], loadfromdb=ATNF_LOC).pandas
        p_ra = query["RAJ"][0]
        p_dec = query["DECJ"][0]
    elif query is not None:
        query = psrqpy.QueryATNF(psrs=[pulsar], loadfromdb=ATNF_LOC).pandas
        p_ra = query["RAJ"][0]
        p_dec = query["DECJ"][0]

    #get metadata if not supplied
    if obs_metadata is None:
        logger.debug("Obtaining obs metadata")
        obs_metadata = mwa_metadb_utils.get_common_obs_metadata(obsid)

    obsid, obs_ra, obs_dec, _, delays, centrefreq, channels = obs_metadata

    #get beg if not supplied
    if beg is None or t_int is None:
        logger.debug("Calculating beginning time for pulsar coverage")
        beg, _, t_int = find_times(obsid, pulsar, beg=beg)

    #Find 'start_time' for fpio - it's usually about 7 seconds
    #obs_start, _ = mwa_metadb_utils.obs_max_min(obsid)
    start_time = beg - int(obsid)

    #Get important info
    trec_table = Table.read(trcvr, format="csv")
    ntiles = 128  #TODO actually we excluded some tiles during beamforming, so we'll need to account for that here

    beam_power = fpio.get_beam_power_over_time([obsid, obs_ra, obs_dec, t_int, delays,\
                                                centrefreq, channels],\
                                                np.array([[pulsar, p_ra, p_dec]]),\
                                                dt=100, start_time=start_time)
    beam_power = np.mean(beam_power)

    # Usa a primary beam function to convolve the sky temperature with the primary beam
    # (prints suppressed)
    sys.stdout = open(os.devnull, 'w')
    _, _, Tsky_XX, _, _, _, Tsky_YY, _ = pbtant.make_primarybeammap(
        int(obsid), delays, centrefreq * 1e6, 'analytic', plottype='None')
    sys.stdout = sys.__stdout__

    #TODO can be inaccurate for coherent but is too difficult to simulate
    t_sky = (Tsky_XX + Tsky_YY) / 2.
    # Get T_sys by adding Trec and Tsky (other temperatures are assumed to be negligible
    t_sys_table = t_sky + submit_to_database.get_Trec(trec_table, centrefreq)
    t_sys = np.mean(t_sys_table)
    t_sys_err = t_sys * 0.02  #TODO: figure out what t_sys error is

    logger.debug("pul_ra: {} pul_dec: {}".format(p_ra, p_dec))
    _, _, zas = mwa_metadb_utils.mwa_alt_az_za(obsid, ra=p_ra, dec=p_dec)
    theta = np.radians(zas)
    gain = submit_to_database.from_power_to_gain(beam_power,
                                                 centrefreq * 1e6,
                                                 ntiles,
                                                 coh=True)
    logger.debug("beam_power: {} theta: {} pi: {}".format(
        beam_power, theta, np.pi))
    gain_err = gain * ((1. - beam_power) * 0.12 + 2. *
                       (theta / (0.5 * np.pi))**2. + 0.1)

    # Removed the below error catch because couldn't find an obs that breaks it
    #sometimes gain_err is a numpy array and sometimes it isnt so i have to to this...
    #try:
    #    gain_err.shape
    #    gain_err = gain_err[0]
    #except:
    #    pass

    return t_sys, t_sys_err, gain, gain_err