def _make_gluon_function_evaluation_rand_param(self, dtype, broadcastable):
        class Dot(HybridBlock):
            def __init__(self, params=None, prefix=None):
                super(Dot, self).__init__(params=params, prefix=prefix)
                with self.name_scope():
                    self.const = self.params.get('const',
                                                 shape=(1, ),
                                                 dtype=dtype,
                                                 init=Zero())

            def hybrid_forward(self, F, a, b, const):
                return F.broadcast_add(F.linalg.gemm2(a, b), const)

        dot = Dot(prefix='dot_')
        dot.initialize()
        dot.hybridize()
        print(dot.collect_params())
        func_wrapper = MXFusionGluonFunction(dot,
                                             1,
                                             dtype=dtype,
                                             broadcastable=broadcastable)
        from mxfusion.components.distributions.normal import Normal
        rand_var = Normal.define_variable(shape=(1, ))
        out = func_wrapper(Variable(shape=(3, 4)),
                           Variable(shape=(4, 5)),
                           dot_const=rand_var)

        return out.factor
Beispiel #2
0
 def gen_mxfusion_model(self,
                        dtype,
                        D,
                        Z,
                        noise_var,
                        lengthscale,
                        variance,
                        rand_gen=None):
     m = Model()
     m.N = Variable()
     m.X = Variable(shape=(m.N, 3))
     m.Z = Variable(shape=(3, 3), initial_value=mx.nd.array(Z, dtype=dtype))
     m.noise_var = Variable(transformation=PositiveTransformation(),
                            initial_value=mx.nd.array(noise_var,
                                                      dtype=dtype))
     kernel = RBF(input_dim=3,
                  ARD=True,
                  variance=mx.nd.array(variance, dtype=dtype),
                  lengthscale=mx.nd.array(lengthscale, dtype=dtype),
                  dtype=dtype)
     m.Y = SVGPRegression.define_variable(X=m.X,
                                          kernel=kernel,
                                          noise_var=m.noise_var,
                                          inducing_inputs=m.Z,
                                          shape=(m.N, D),
                                          dtype=dtype)
     gp = m.Y.factor
     m.Y.factor.svgp_log_pdf.jitter = 1e-8
     return m, gp
Beispiel #3
0
 def gen_mxfusion_model(self,
                        dtype,
                        D,
                        noise_var,
                        lengthscale,
                        variance,
                        rand_gen=None):
     m = Model()
     m.N = Variable()
     m.X = Variable(shape=(m.N, 3))
     m.noise_var = Variable(transformation=PositiveTransformation(),
                            initial_value=mx.nd.array(noise_var,
                                                      dtype=dtype))
     kernel = RBF(input_dim=3,
                  ARD=True,
                  variance=mx.nd.array(variance, dtype=dtype),
                  lengthscale=mx.nd.array(lengthscale, dtype=dtype),
                  dtype=dtype)
     m.Y = GPRegression.define_variable(X=m.X,
                                        kernel=kernel,
                                        noise_var=m.noise_var,
                                        shape=(m.N, D),
                                        dtype=dtype,
                                        rand_gen=rand_gen)
     return m
Beispiel #4
0
    def test_with_samples(self):
        from mxfusion.common import config
        config.DEFAULT_DTYPE = 'float64'
        dtype = 'float64'

        D, X, Y, noise_var, lengthscale, variance = self.gen_data()

        m = Model()
        m.N = Variable()
        m.X = Normal.define_variable(mean=0, variance=1, shape=(m.N, 3))
        m.noise_var = Variable(transformation=PositiveTransformation(),
                               initial_value=mx.nd.array(noise_var,
                                                         dtype=dtype))
        kernel = RBF(input_dim=3,
                     ARD=True,
                     variance=mx.nd.array(variance, dtype=dtype),
                     lengthscale=mx.nd.array(lengthscale, dtype=dtype),
                     dtype=dtype)
        m.Y = GPRegression.define_variable(X=m.X,
                                           kernel=kernel,
                                           noise_var=m.noise_var,
                                           shape=(m.N, D))

        q = create_Gaussian_meanfield(model=m, observed=[m.Y])

        infr = GradBasedInference(
            inference_algorithm=StochasticVariationalInference(
                model=m, posterior=q, num_samples=10, observed=[m.Y]))
        infr.run(Y=mx.nd.array(Y, dtype='float64'),
                 max_iter=2,
                 learning_rate=0.1,
                 verbose=True)

        infr2 = Inference(
            ForwardSamplingAlgorithm(model=m, observed=[m.X], num_samples=5))
        infr2.run(X=mx.nd.array(X, dtype='float64'))

        infr_pred = TransferInference(ModulePredictionAlgorithm(
            model=m, observed=[m.X], target_variables=[m.Y]),
                                      infr_params=infr.params)
        xt = np.random.rand(13, 3)
        res = infr_pred.run(X=mx.nd.array(xt, dtype=dtype))[0]

        gp = m.Y.factor
        gp.attach_prediction_algorithms(
            targets=gp.output_names,
            conditionals=gp.input_names,
            algorithm=GPRegressionSamplingPrediction(gp._module_graph,
                                                     gp._extra_graphs[0],
                                                     [gp._module_graph.X]),
            alg_name='gp_predict')
        gp.gp_predict.diagonal_variance = False
        gp.gp_predict.jitter = 1e-6

        infr_pred2 = TransferInference(ModulePredictionAlgorithm(
            model=m, observed=[m.X], target_variables=[m.Y]),
                                       infr_params=infr.params)
        xt = np.random.rand(13, 3)
        res = infr_pred2.run(X=mx.nd.array(xt, dtype=dtype))[0]
Beispiel #5
0
 def make_gpregr_model(self):
     m = Model()
     m.N = Variable()
     m.X = Variable(shape=(m.N, 3))
     m.noise_var = Variable(transformation=PositiveTransformation(), initial_value=mx.nd.array([1.]))
     kernel = RBF(input_dim=3, variance=mx.nd.array([1.]), lengthscale=mx.nd.array([1.]))
     m.Y = GPRegression.define_variable(X=m.X, kernel=kernel, noise_var=m.noise_var, shape=(m.N, 2))
     return m
Beispiel #6
0
    def test_prediction(self):
        np.random.seed(0)
        np.random.seed(0)
        X = np.random.rand(10, 3)
        Y = np.random.rand(10, 1)
        Z = np.random.rand(3, 3)
        qU_mean = np.random.rand(3, 1)
        qU_cov_W = np.random.rand(3, 3)
        qU_cov_diag = np.random.rand(3,)
        noise_var = np.random.rand(1)
        lengthscale = np.random.rand(3)
        variance = np.random.rand(1)
        qU_chol = np.linalg.cholesky(qU_cov_W.dot(qU_cov_W.T)+np.diag(qU_cov_diag))[None,:,:]
        Xt = np.random.rand(5, 3)

        m_gpy = GPy.core.SVGP(X=X, Y=Y, Z=Z, kernel=GPy.kern.RBF(3, ARD=True, lengthscale=lengthscale, variance=variance), likelihood=GPy.likelihoods.Gaussian(variance=noise_var))
        m_gpy.q_u_mean = qU_mean
        m_gpy.q_u_chol = GPy.util.choleskies.triang_to_flat(qU_chol)

        dtype = 'float64'
        m = Model()
        m.N = Variable()
        m.X = Variable(shape=(m.N, 3))
        m.Z = Variable(shape=(3, 3), initial_value=mx.nd.array(Z, dtype=dtype))
        m.noise_var = Variable(transformation=PositiveTransformation(), initial_value=mx.nd.array(noise_var, dtype=dtype))
        kernel = RBF(input_dim=3, ARD=True, variance=mx.nd.array(variance, dtype=dtype), lengthscale=mx.nd.array(lengthscale, dtype=dtype), dtype=dtype)
        m.Y = SVGPRegression.define_variable(X=m.X, kernel=kernel, noise_var=m.noise_var, inducing_inputs=m.Z, shape=(m.N, 1), dtype=dtype)
        gp = m.Y.factor

        observed = [m.X, m.Y]
        infr = Inference(MAP(model=m, observed=observed), dtype=dtype)
        infr.initialize(X=X.shape, Y=Y.shape)
        infr.params[gp._extra_graphs[0].qU_mean] = mx.nd.array(qU_mean, dtype=dtype)
        infr.params[gp._extra_graphs[0].qU_cov_W] = mx.nd.array(qU_cov_W, dtype=dtype)
        infr.params[gp._extra_graphs[0].qU_cov_diag] = mx.nd.array(qU_cov_diag, dtype=dtype)

        loss, _ = infr.run(X=mx.nd.array(X, dtype=dtype), Y=mx.nd.array(Y, dtype=dtype))

        # noise_free, diagonal
        mu_gpy, var_gpy = m_gpy.predict_noiseless(Xt)

        infr2 = TransferInference(ModulePredictionAlgorithm(m, observed=[m.X], target_variables=[m.Y]), infr_params=infr.params, dtype=np.float64)
        res = infr2.run(X=mx.nd.array(Xt, dtype=dtype))[0]
        mu_mf, var_mf = res[0].asnumpy()[0], res[1].asnumpy()[0]

        assert np.allclose(mu_gpy, mu_mf), (mu_gpy, mu_mf)
        assert np.allclose(var_gpy[:,0], var_mf), (var_gpy[:,0], var_mf)

        # noisy, diagonal
        mu_gpy, var_gpy = m_gpy.predict(Xt)

        infr2 = TransferInference(ModulePredictionAlgorithm(m, observed=[m.X], target_variables=[m.Y]), infr_params=infr.params, dtype=np.float64)
        infr2.inference_algorithm.model.Y.factor.svgp_predict.noise_free = False
        res = infr2.run(X=mx.nd.array(Xt, dtype=dtype))[0]
        mu_mf, var_mf = res[0].asnumpy()[0], res[1].asnumpy()[0]

        assert np.allclose(mu_gpy, mu_mf), (mu_gpy, mu_mf)
        assert np.allclose(var_gpy[:,0], var_mf), (var_gpy[:,0], var_mf)
 def __init__(self):
     inputs = [('A', Variable(shape=(3, 4))), ('B', Variable(shape=(4, 5)))]
     outputs = [('output', Variable(shape=(3, 5)))]
     input_names = ['A', 'B']
     output_names = ['output']
     super(DotFuncEval, self).__init__(inputs=inputs, outputs=outputs,
                                       input_names=input_names,
                                       output_names=output_names,
                                       broadcastable=broadcastable)
Beispiel #8
0
    def test_sampling_prediction(self):
        np.random.seed(0)
        X = np.random.rand(10, 3)
        Xt = np.random.rand(20, 3)
        Y = np.random.rand(10, 1)
        noise_var = np.random.rand(1)
        lengthscale = np.random.rand(3)
        variance = np.random.rand(1)

        m_gpy = GPy.models.GPRegression(X=X,
                                        Y=Y,
                                        kernel=GPy.kern.RBF(
                                            3,
                                            ARD=True,
                                            lengthscale=lengthscale,
                                            variance=variance),
                                        noise_var=noise_var)

        dtype = 'float64'
        m = Model()
        m.N = Variable()
        m.X = Variable(shape=(m.N, 3))
        m.noise_var = Variable(transformation=PositiveTransformation(),
                               initial_value=mx.nd.array(noise_var,
                                                         dtype=dtype))
        kernel = RBF(input_dim=3,
                     ARD=True,
                     variance=mx.nd.array(variance, dtype=dtype),
                     lengthscale=mx.nd.array(lengthscale, dtype=dtype),
                     dtype=dtype)
        m.Y = GPRegression.define_variable(X=m.X,
                                           kernel=kernel,
                                           noise_var=m.noise_var,
                                           shape=(m.N, 1),
                                           dtype=dtype)

        observed = [m.X, m.Y]
        infr = Inference(MAP(model=m, observed=observed), dtype=dtype)

        loss, _ = infr.run(X=mx.nd.array(X, dtype=dtype),
                           Y=mx.nd.array(Y, dtype=dtype))

        infr_pred = TransferInference(ModulePredictionAlgorithm(
            model=m, observed=[m.X], target_variables=[m.Y], num_samples=5),
                                      infr_params=infr.params)
        gp = m.Y.factor
        gp.attach_prediction_algorithms(
            targets=gp.output_names,
            conditionals=gp.input_names,
            algorithm=GPRegressionSamplingPrediction(gp._module_graph,
                                                     gp._extra_graphs[0],
                                                     [gp._module_graph.X]),
            alg_name='gp_predict')
        gp.gp_predict.diagonal_variance = False
        gp.gp_predict.jitter = 1e-6

        y_samples = infr_pred.run(X=mx.nd.array(Xt, dtype=dtype))[0].asnumpy()
Beispiel #9
0
    def _make_gluon_function_evaluation(self, dtype, broadcastable):
        class Dot(HybridBlock):
            def hybrid_forward(self, F, a, b):
                return F.linalg.gemm2(a, b)

        dot = Dot(prefix='dot')
        dot.initialize()
        dot.hybridize()
        func_wrapper = MXFusionGluonFunction(dot, 1, dtype=dtype,
                                             broadcastable=broadcastable)
        out = func_wrapper(Variable(shape=(3, 4)), Variable(shape=(4, 5)))

        return out.factor
Beispiel #10
0
    def test_sampling_prediction(self):
        np.random.seed(0)
        np.random.seed(0)
        X = np.random.rand(10, 3)
        Y = np.random.rand(10, 1)
        Z = np.random.rand(3, 3)
        qU_mean = np.random.rand(3, 1)
        qU_cov_W = np.random.rand(3, 3)
        qU_cov_diag = np.random.rand(3,)
        noise_var = np.random.rand(1)
        lengthscale = np.random.rand(3)
        variance = np.random.rand(1)
        qU_chol = np.linalg.cholesky(qU_cov_W.dot(qU_cov_W.T)+np.diag(qU_cov_diag))[None,:,:]
        Xt = np.random.rand(5, 3)

        m_gpy = GPy.core.SVGP(X=X, Y=Y, Z=Z, kernel=GPy.kern.RBF(3, ARD=True, lengthscale=lengthscale, variance=variance), likelihood=GPy.likelihoods.Gaussian(variance=noise_var))
        m_gpy.q_u_mean = qU_mean
        m_gpy.q_u_chol = GPy.util.choleskies.triang_to_flat(qU_chol)

        dtype = 'float64'
        m = Model()
        m.N = Variable()
        m.X = Variable(shape=(m.N, 3))
        m.Z = Variable(shape=(3, 3), initial_value=mx.nd.array(Z, dtype=dtype))
        m.noise_var = Variable(transformation=PositiveTransformation(), initial_value=mx.nd.array(noise_var, dtype=dtype))
        kernel = RBF(input_dim=3, ARD=True, variance=mx.nd.array(variance, dtype=dtype), lengthscale=mx.nd.array(lengthscale, dtype=dtype), dtype=dtype)
        m.Y = SVGPRegression.define_variable(X=m.X, kernel=kernel, noise_var=m.noise_var, inducing_inputs=m.Z, shape=(m.N, 1), dtype=dtype)
        gp = m.Y.factor

        observed = [m.X, m.Y]
        infr = Inference(MAP(model=m, observed=observed), dtype=dtype)
        infr.initialize(X=X.shape, Y=Y.shape)
        infr.params[gp._extra_graphs[0].qU_mean] = mx.nd.array(qU_mean, dtype=dtype)
        infr.params[gp._extra_graphs[0].qU_cov_W] = mx.nd.array(qU_cov_W, dtype=dtype)
        infr.params[gp._extra_graphs[0].qU_cov_diag] = mx.nd.array(qU_cov_diag, dtype=dtype)

        loss, _ = infr.run(X=mx.nd.array(X, dtype=dtype), Y=mx.nd.array(Y, dtype=dtype))

        # noise_free, diagonal
        infr_pred = TransferInference(ModulePredictionAlgorithm(model=m, observed=[m.X], target_variables=[m.Y], num_samples=5),
                                      infr_params=infr.params)
        gp = m.Y.factor
        gp.attach_prediction_algorithms(
            targets=gp.output_names, conditionals=gp.input_names,
            algorithm=SVGPRegressionSamplingPrediction(
                gp._module_graph, gp._extra_graphs[0], [gp._module_graph.X]),
            alg_name='svgp_predict')
        gp.svgp_predict.diagonal_variance = False
        gp.svgp_predict.jitter = 1e-6

        y_samples = infr_pred.run(X=mx.nd.array(Xt, dtype=dtype))[0].asnumpy()
Beispiel #11
0
    def test_draw_samples(self):
        np.random.seed(0)
        samples_1_np = np.random.randn(5)
        samples_1 = mx.nd.array(samples_1_np)
        samples_2_np = np.random.randn(50)
        samples_2 = mx.nd.array(samples_2_np)
        m = Model()
        v = Variable(shape=(1,))
        m.v2 = Normal.define_variable(mean=v, variance=mx.nd.array([1]), rand_gen=MockMXNetRandomGenerator(samples_1))
        m.v3 = Normal.define_variable(mean=m.v2, variance=mx.nd.array([0.1]), shape=(10,), rand_gen=MockMXNetRandomGenerator(samples_2))
        np.random.seed(0)
        v_np =np.random.rand(1)
        v_mx = mx.nd.array(v_np)

        v_rt = add_sample_dimension(mx.nd, v_mx)
        variance = m.v2.factor.variance
        variance2 = m.v3.factor.variance
        variance_rt = add_sample_dimension(mx.nd, variance.constant)
        variance2_rt = add_sample_dimension(mx.nd, variance2.constant)
        samples = m.draw_samples(F=mx.nd, num_samples=5, targets=[m.v3.uuid],
        variables={v.uuid: v_rt, variance.uuid: variance_rt, variance2.uuid: variance2_rt})[0]

        samples_np = v_np + samples_1_np[:, None] + np.sqrt(0.1)*samples_2_np.reshape(5,10)

        assert array_has_samples(mx.nd, samples) and get_num_samples(mx.nd, samples)==5
        assert np.allclose(samples.asnumpy(), samples_np)
Beispiel #12
0
    def test_compute_log_prob(self):
        m = Model()
        v = Variable(shape=(1,))
        m.v2 = Normal.define_variable(mean=v, variance=mx.nd.array([1]))
        m.v3 = Normal.define_variable(mean=m.v2, variance=mx.nd.array([1]), shape=(10,))
        np.random.seed(0)
        v_mx = mx.nd.array(np.random.randn(1))
        v2_mx = mx.nd.array(np.random.randn(1))
        v3_mx = mx.nd.array(np.random.randn(10))

        v_rt = add_sample_dimension(mx.nd, v_mx)
        v2_rt = add_sample_dimension(mx.nd, v2_mx)
        v3_rt = add_sample_dimension(mx.nd, v3_mx)
        variance = m.v2.factor.variance
        variance2 = m.v3.factor.variance
        variance_rt = add_sample_dimension(mx.nd, variance.constant)
        variance2_rt = add_sample_dimension(mx.nd, variance2.constant)
        log_pdf = m.log_pdf(F=mx.nd, variables={m.v2.uuid: v2_rt, m.v3.uuid:v3_rt, variance.uuid: variance_rt, variance2.uuid: variance2_rt, v.uuid: v_rt}).asscalar()

        variables = {m.v2.factor.mean.uuid: v_rt, m.v2.factor.variance.uuid: variance_rt, m.v2.factor.random_variable.uuid: v2_rt}
        log_pdf_1 = mx.nd.sum(m.v2.factor.log_pdf(F=mx.nd, variables=variables))
        variables = {m.v3.factor.mean.uuid: v2_rt, m.v3.factor.variance.uuid: variance2_rt, m.v3.factor.random_variable.uuid: v3_rt}
        log_pdf_2 = mx.nd.sum(m.v3.factor.log_pdf(F=mx.nd, variables=variables))

        assert log_pdf == (log_pdf_1 + log_pdf_2).asscalar()
Beispiel #13
0
    def test_log_pdf(self):
        np.random.seed(0)
        D = 2
        X = np.random.rand(10, 3)
        Y = np.random.rand(10, D)
        noise_var = np.random.rand(1)
        lengthscale = np.random.rand(3)
        variance = np.random.rand(1)

        m_gpy = GPy.models.GPRegression(X=X,
                                        Y=Y,
                                        kernel=GPy.kern.RBF(
                                            3,
                                            ARD=True,
                                            lengthscale=lengthscale,
                                            variance=variance),
                                        noise_var=noise_var)

        l_gpy = m_gpy.log_likelihood()

        dtype = 'float64'
        m = Model()
        m.N = Variable()
        m.X = Variable(shape=(m.N, 3))
        m.noise_var = Variable(transformation=PositiveTransformation(),
                               initial_value=mx.nd.array(noise_var,
                                                         dtype=dtype))
        kernel = RBF(input_dim=3,
                     ARD=True,
                     variance=mx.nd.array(variance, dtype=dtype),
                     lengthscale=mx.nd.array(lengthscale, dtype=dtype),
                     dtype=dtype)
        m.Y = GPRegression.define_variable(X=m.X,
                                           kernel=kernel,
                                           noise_var=m.noise_var,
                                           shape=(m.N, D),
                                           dtype=dtype)

        observed = [m.X, m.Y]
        infr = Inference(MAP(model=m, observed=observed), dtype=dtype)

        loss, _ = infr.run(X=mx.nd.array(X, dtype=dtype),
                           Y=mx.nd.array(Y, dtype=dtype))
        l_mf = -loss

        assert np.allclose(l_mf.asnumpy(), l_gpy)
    def test_function_execution(self):
        f, f_mx = self.instantialize_customize_function()
        np.random.seed(0)
        A = mx.nd.array(np.random.rand(1, 3, 2))
        B = mx.nd.array(np.random.rand(1, 3, 2))
        C = mx.nd.array(np.random.rand(1))

        A_mf = Variable(shape=A.shape)
        B_mf = Variable(shape=B.shape)
        outs = f(A_mf, B_mf)
        assert len(outs) == 2
        eval = f(A_mf, B_mf)[0].factor
        variables = {A_mf.uuid: A, B_mf.uuid: B, eval.C.uuid: C}
        res_eval = eval.eval(F=mx.nd, variables=variables)
        res_mx = f_mx(A, B, C)
        assert np.allclose(res_eval[0].asnumpy(), res_mx[0].asnumpy())
        assert np.allclose(res_eval[1].asnumpy(), res_mx[1].asnumpy())
Beispiel #15
0
    def test_module_clone(self):
        D, X, Y, Z, noise_var, lengthscale, variance, qU_mean, \
            qU_cov_W, qU_cov_diag, qU_chol = self.gen_data()
        dtype = 'float64'

        m = Model()
        m.N = Variable()
        m.X = Variable(shape=(m.N, 3))
        kernel = RBF(input_dim=3,
                     ARD=True,
                     variance=mx.nd.array(variance, dtype=dtype),
                     lengthscale=mx.nd.array(lengthscale, dtype=dtype),
                     dtype=dtype)
        m.Y = SVGPRegression.define_variable(X=mx.nd.zeros((2, 3)),
                                             kernel=kernel,
                                             noise_var=mx.nd.ones((1, )),
                                             dtype=dtype)
        m.clone()
Beispiel #16
0
    def gen_mxfusion_model_w_mean(self, dtype, D, Z, noise_var, lengthscale,
                                  variance, rand_gen=None):
        net = nn.HybridSequential(prefix='nn_')
        with net.name_scope():
            net.add(nn.Dense(D, flatten=False, activation="tanh",
                             in_units=3, dtype=dtype))
        net.initialize(mx.init.Xavier(magnitude=3))

        m = Model()
        m.N = Variable()
        m.X = Variable(shape=(m.N, 3))
        m.Z = Variable(shape=(3, 3), initial_value=mx.nd.array(Z, dtype=dtype))
        m.noise_var = Variable(transformation=PositiveTransformation(), initial_value=mx.nd.array(noise_var, dtype=dtype))
        kernel = RBF(input_dim=3, ARD=True, variance=mx.nd.array(variance, dtype=dtype), lengthscale=mx.nd.array(lengthscale, dtype=dtype), dtype=dtype)
        m.mean_func = MXFusionGluonFunction(net, num_outputs=1,
                                            broadcastable=True)
        m.Y = SparseGPRegression.define_variable(X=m.X, kernel=kernel, noise_var=m.noise_var, mean=m.mean_func(m.X), inducing_inputs=m.Z, shape=(m.N, D), dtype=dtype)
        m.Y.factor.sgp_log_pdf.jitter = 1e-8
        return m, net
Beispiel #17
0
    def test_clone_gp(self, dtype, X, X_isSamples, rbf_lengthscale,
                      rbf_lengthscale_isSamples, rbf_variance,
                      rbf_variance_isSamples, rv, rv_isSamples, num_samples):
        X_mx = prepare_mxnet_array(X, X_isSamples, dtype)
        rbf_lengthscale_mx = prepare_mxnet_array(rbf_lengthscale,
                                                 rbf_lengthscale_isSamples,
                                                 dtype)
        rbf_variance_mx = prepare_mxnet_array(rbf_variance,
                                              rbf_variance_isSamples, dtype)
        rv_mx = prepare_mxnet_array(rv, rv_isSamples, dtype)
        rv_shape = rv.shape[1:] if rv_isSamples else rv.shape

        rbf = RBF(2, True, 1., 1., 'rbf', None, dtype)

        m = Model()
        m.X_var = Variable(shape=(5, 2))
        m.Y = GaussianProcess.define_variable(X=m.X_var,
                                              kernel=rbf,
                                              shape=rv_shape,
                                              dtype=dtype)

        gp = m.clone().Y.factor

        variables = {
            gp.X.uuid: X_mx,
            gp.rbf_lengthscale.uuid: rbf_lengthscale_mx,
            gp.rbf_variance.uuid: rbf_variance_mx,
            gp.random_variable.uuid: rv_mx
        }
        log_pdf_rt = gp.log_pdf(F=mx.nd, variables=variables).asnumpy()

        log_pdf_np = []
        for i in range(num_samples):
            X_i = X[i] if X_isSamples else X
            lengthscale_i = rbf_lengthscale[
                i] if rbf_lengthscale_isSamples else rbf_lengthscale
            variance_i = rbf_variance[
                i] if rbf_variance_isSamples else rbf_variance
            rv_i = rv[i] if rv_isSamples else rv
            rbf_np = GPy.kern.RBF(input_dim=2, ARD=True)
            rbf_np.lengthscale = lengthscale_i
            rbf_np.variance = variance_i
            K_np = rbf_np.K(X_i)
            log_pdf_np.append(
                multivariate_normal.logpdf(rv_i[:, 0], mean=None, cov=K_np))
        log_pdf_np = np.array(log_pdf_np)
        isSamples_any = any([
            X_isSamples, rbf_lengthscale_isSamples, rbf_variance_isSamples,
            rv_isSamples
        ])
        assert np.issubdtype(log_pdf_rt.dtype, dtype)
        assert array_has_samples(mx.nd, log_pdf_rt) == isSamples_any
        if isSamples_any:
            assert get_num_samples(mx.nd, log_pdf_rt) == num_samples
        assert np.allclose(log_pdf_np, log_pdf_rt)
Beispiel #18
0
    def test_log_pdf(self):
        np.random.seed(0)
        D = 2
        X = np.random.rand(10, 3)
        Y = np.random.rand(10, D)
        Z = np.random.rand(3, 3)
        qU_mean = np.random.rand(3, D)
        qU_cov_W = np.random.rand(3, 3)
        qU_cov_diag = np.random.rand(3,)
        noise_var = np.random.rand(1)
        lengthscale = np.random.rand(3)
        variance = np.random.rand(1)
        qU_chol = np.linalg.cholesky(qU_cov_W.dot(qU_cov_W.T)+np.diag(qU_cov_diag))[None,:,:]

        m_gpy = GPy.core.SVGP(X=X, Y=Y, Z=Z, kernel=GPy.kern.RBF(3, ARD=True, lengthscale=lengthscale, variance=variance), likelihood=GPy.likelihoods.Gaussian(variance=noise_var))
        m_gpy.q_u_mean = qU_mean
        m_gpy.q_u_chol = GPy.util.choleskies.triang_to_flat(qU_chol)

        l_gpy = m_gpy.log_likelihood()

        dtype = 'float64'
        m = Model()
        m.N = Variable()
        m.X = Variable(shape=(m.N, 3))
        m.Z = Variable(shape=(3, 3), initial_value=mx.nd.array(Z, dtype=dtype))
        m.noise_var = Variable(transformation=PositiveTransformation(), initial_value=mx.nd.array(noise_var, dtype=dtype))
        kernel = RBF(input_dim=3, ARD=True, variance=mx.nd.array(variance, dtype=dtype), lengthscale=mx.nd.array(lengthscale, dtype=dtype), dtype=dtype)
        m.Y = SVGPRegression.define_variable(X=m.X, kernel=kernel, noise_var=m.noise_var, inducing_inputs=m.Z, shape=(m.N, D), dtype=dtype)
        gp = m.Y.factor

        observed = [m.X, m.Y]
        infr = Inference(MAP(model=m, observed=observed), dtype=dtype)
        infr.initialize(X=X.shape, Y=Y.shape)
        infr.params[gp._extra_graphs[0].qU_mean] = mx.nd.array(qU_mean, dtype=dtype)
        infr.params[gp._extra_graphs[0].qU_cov_W] = mx.nd.array(qU_cov_W, dtype=dtype)
        infr.params[gp._extra_graphs[0].qU_cov_diag] = mx.nd.array(qU_cov_diag, dtype=dtype)

        loss, _ = infr.run(X=mx.nd.array(X, dtype=dtype), Y=mx.nd.array(Y, dtype=dtype))
        l_mf = -loss

        assert np.allclose(l_mf.asnumpy(), l_gpy)
Beispiel #19
0
    def test_log_pdf_w_samples_of_noise_var(self):
        D, X, Y, Z, noise_var, lengthscale, variance, qU_mean, \
            qU_cov_W, qU_cov_diag, qU_chol = self.gen_data()
        dtype = 'float64'
        D = 2
        Y = np.random.rand(10, D)
        qU_mean = np.random.rand(3, D)

        m = Model()
        m.N = Variable()
        m.X = Variable(shape=(m.N, 3))
        m.Z = Variable(shape=(3, 3), initial_value=mx.nd.array(Z, dtype=dtype))
        m.noise_var = Variable(transformation=PositiveTransformation(),
                               shape=(m.N, D))
        kernel = RBF(input_dim=3,
                     ARD=True,
                     variance=mx.nd.array(variance, dtype=dtype),
                     lengthscale=mx.nd.array(lengthscale, dtype=dtype),
                     dtype=dtype)
        m.Y = SVGPRegression.define_variable(X=m.X,
                                             kernel=kernel,
                                             noise_var=m.noise_var,
                                             inducing_inputs=m.Z,
                                             shape=(m.N, D),
                                             dtype=dtype)
        gp = m.Y.factor
        m.Y.factor.svgp_log_pdf.jitter = 1e-8

        observed = [m.X, m.Y]
        infr = Inference(MAP(model=m, observed=observed), dtype=dtype)
        infr.initialize(X=X.shape, Y=Y.shape)
        infr.params[gp._extra_graphs[0].qU_mean] = mx.nd.array(qU_mean,
                                                               dtype=dtype)
        infr.params[gp._extra_graphs[0].qU_cov_W] = mx.nd.array(qU_cov_W,
                                                                dtype=dtype)
        infr.params[gp._extra_graphs[0].qU_cov_diag] = mx.nd.array(qU_cov_diag,
                                                                   dtype=dtype)

        loss, _ = infr.run(X=mx.nd.array(X, dtype=dtype),
                           Y=mx.nd.array(Y, dtype=dtype),
                           max_iter=1)
Beispiel #20
0
    def test_gluon_parameters(self):
        self.setUp()

        m = Model()
        m.x = Variable(shape=(1, 1))
        m.f = MXFusionGluonFunction(self.net, num_outputs=1)
        m.y = m.f(m.x)

        infr = Inference(ForwardSamplingAlgorithm(m, observed=[m.x]))
        infr.run(x=mx.nd.ones((1, 1)))
        assert all([
            v.uuid in infr.params.param_dict for v in m.f.parameters.values()
        ])
Beispiel #21
0
    def test_draw_samples_w_mean(self):
        D, X, Y, noise_var, lengthscale, variance = self.gen_data()
        dtype = 'float64'

        rand_gen = MockMXNetRandomGenerator(
            mx.nd.array(np.random.rand(20 * D), dtype=dtype))

        m, net = self.gen_mxfusion_model_w_mean(dtype, D, noise_var,
                                                lengthscale, variance,
                                                rand_gen)

        observed = [m.X]
        infr = Inference(ForwardSamplingAlgorithm(m,
                                                  observed,
                                                  num_samples=2,
                                                  target_variables=[m.Y]),
                         dtype=dtype)

        samples = infr.run(X=mx.nd.array(X, dtype=dtype),
                           Y=mx.nd.array(Y, dtype=dtype))[0].asnumpy()

        kern = RBF(3, True, name='rbf', dtype=dtype) + White(3, dtype=dtype)
        X_var = Variable(shape=(10, 3))
        mean_func = MXFusionGluonFunction(net,
                                          num_outputs=1,
                                          broadcastable=True)
        mean_var = mean_func(X_var)
        gp = GaussianProcess.define_variable(X=X_var,
                                             kernel=kern,
                                             mean=mean_var,
                                             shape=(10, D),
                                             dtype=dtype,
                                             rand_gen=rand_gen).factor

        variables = {
            gp.X.uuid:
            mx.nd.expand_dims(mx.nd.array(X, dtype=dtype), axis=0),
            gp.add_rbf_lengthscale.uuid:
            mx.nd.expand_dims(mx.nd.array(lengthscale, dtype=dtype), axis=0),
            gp.add_rbf_variance.uuid:
            mx.nd.expand_dims(mx.nd.array(variance, dtype=dtype), axis=0),
            gp.add_white_variance.uuid:
            mx.nd.expand_dims(mx.nd.array(noise_var, dtype=dtype), axis=0),
            mean_var.uuid:
            mx.nd.expand_dims(net(mx.nd.array(X, dtype=dtype)), axis=0)
        }
        samples_2 = gp.draw_samples(F=mx.nd,
                                    variables=variables,
                                    num_samples=2).asnumpy()

        assert np.allclose(samples, samples_2), (samples, samples_2)
Beispiel #22
0
    def test_draw_samples(self, dtype, X, X_isSamples, rbf_lengthscale,
                          rbf_lengthscale_isSamples, rbf_variance,
                          rbf_variance_isSamples, rv_shape, num_samples):
        X_mx = prepare_mxnet_array(X, X_isSamples, dtype)
        rbf_lengthscale_mx = prepare_mxnet_array(rbf_lengthscale,
                                                 rbf_lengthscale_isSamples,
                                                 dtype)
        rbf_variance_mx = prepare_mxnet_array(rbf_variance,
                                              rbf_variance_isSamples, dtype)

        rand = np.random.randn(num_samples, *rv_shape)
        rand_gen = MockMXNetRandomGenerator(
            mx.nd.array(rand.flatten(), dtype=dtype))

        rbf = RBF(2, True, 1., 1., 'rbf', None, dtype)
        X_var = Variable(shape=(5, 2))
        gp = GaussianProcess.define_variable(X=X_var,
                                             kernel=rbf,
                                             shape=rv_shape,
                                             dtype=dtype,
                                             rand_gen=rand_gen).factor

        variables = {
            gp.X.uuid: X_mx,
            gp.rbf_lengthscale.uuid: rbf_lengthscale_mx,
            gp.rbf_variance.uuid: rbf_variance_mx
        }
        samples_rt = gp.draw_samples(F=mx.nd,
                                     variables=variables,
                                     num_samples=num_samples).asnumpy()

        samples_np = []
        for i in range(num_samples):
            X_i = X[i] if X_isSamples else X
            lengthscale_i = rbf_lengthscale[
                i] if rbf_lengthscale_isSamples else rbf_lengthscale
            variance_i = rbf_variance[
                i] if rbf_variance_isSamples else rbf_variance
            rand_i = rand[i]
            rbf_np = GPy.kern.RBF(input_dim=2, ARD=True)
            rbf_np.lengthscale = lengthscale_i
            rbf_np.variance = variance_i
            K_np = rbf_np.K(X_i)
            L_np = np.linalg.cholesky(K_np)
            sample_np = L_np.dot(rand_i)
            samples_np.append(sample_np)
        samples_np = np.array(samples_np)

        assert np.issubdtype(samples_rt.dtype, dtype)
        assert get_num_samples(mx.nd, samples_rt) == num_samples
        assert np.allclose(samples_np, samples_rt)
Beispiel #23
0
    def test_save_reload_constants(self):
        constants = {Variable(): 5, 'uuid': mx.nd.array([1])}
        ip = InferenceParameters(constants=constants)
        ip.save(prefix="constants_test")
        # assert the file is there

        ip2 = InferenceParameters.load_parameters(
            mxnet_constants_file='constants_test_mxnet_constants.json',
            variable_constants_file='constants_test_variable_constants.json')
        print(ip.constants)
        print(ip2.constants)
        assert ip.constants == ip2.constants

        self.remove_saved_files("constants_test")
Beispiel #24
0
    def test_decode_component(self):
        v = Variable()
        v2 = Variable()
        v.predecessors = [('first', v2)]
        v.attributes = [Variable()] #[('shape', (Variable(), 1))]

        data = {
            "var": v
        }
        a = json.dumps(data, cls=ModelComponentEncoder, indent=2)
        b = json.loads(a, cls=ModelComponentDecoder)
        assert b == data
Beispiel #25
0
    def test_encode_component(self):

        v = Variable()
        v2 = Variable()
        v.predecessors = [('first', v2)]
        # TODO: extend attributes to support generic representation
        v.attributes = [Variable()]#[('shape', (Variable(), 1))]

        data = {
            "var": v
        }

        a = json.dumps(data, cls=ModelComponentEncoder, indent=2)
        print(a)
Beispiel #26
0
 def make_simple_model(self):
     m = Model()
     mean = Variable()
     variance = Variable()
     m.r = Normal.define_variable(mean=mean, variance=variance)
     return m
Beispiel #27
0
    def test_draw_samples(self):
        np.random.seed(0)
        X = np.random.rand(10, 3)
        Y = np.random.rand(10, 1)
        noise_var = np.random.rand(1)
        lengthscale = np.random.rand(3)
        variance = np.random.rand(1)
        dtype = 'float64'

        rand_gen = MockMXNetRandomGenerator(
            mx.nd.array(np.random.rand(20), dtype=dtype))

        m = Model()
        m.N = Variable()
        m.X = Variable(shape=(m.N, 3))
        m.noise_var = Variable(transformation=PositiveTransformation(),
                               initial_value=mx.nd.array(noise_var,
                                                         dtype=dtype))
        kernel = RBF(input_dim=3,
                     ARD=True,
                     variance=mx.nd.array(variance, dtype=dtype),
                     lengthscale=mx.nd.array(lengthscale, dtype=dtype),
                     dtype=dtype)
        m.Y = GPRegression.define_variable(X=m.X,
                                           kernel=kernel,
                                           noise_var=m.noise_var,
                                           shape=(m.N, 1),
                                           dtype=dtype,
                                           rand_gen=rand_gen)

        observed = [m.X]
        infr = Inference(ForwardSamplingAlgorithm(m,
                                                  observed,
                                                  num_samples=2,
                                                  target_variables=[m.Y]),
                         dtype=dtype)

        samples = infr.run(X=mx.nd.array(X, dtype=dtype),
                           Y=mx.nd.array(Y, dtype=dtype))[0].asnumpy()

        kern = RBF(3, True, name='rbf', dtype=dtype) + White(3, dtype=dtype)
        X_var = Variable(shape=(10, 3))
        gp = GaussianProcess.define_variable(X=X_var,
                                             kernel=kern,
                                             shape=(10, 1),
                                             dtype=dtype,
                                             rand_gen=rand_gen).factor

        variables = {
            gp.X.uuid:
            mx.nd.expand_dims(mx.nd.array(X, dtype=dtype), axis=0),
            gp.add_rbf_lengthscale.uuid:
            mx.nd.expand_dims(mx.nd.array(lengthscale, dtype=dtype), axis=0),
            gp.add_rbf_variance.uuid:
            mx.nd.expand_dims(mx.nd.array(variance, dtype=dtype), axis=0),
            gp.add_white_variance.uuid:
            mx.nd.expand_dims(mx.nd.array(noise_var, dtype=dtype), axis=0)
        }
        samples_2 = gp.draw_samples(F=mx.nd,
                                    variables=variables,
                                    num_samples=2).asnumpy()

        assert np.allclose(samples, samples_2), (samples, samples_2)
Beispiel #28
0
    def test_draw_samples_w_mean(self, dtype, X, X_isSamples, rbf_lengthscale,
                                 rbf_lengthscale_isSamples, rbf_variance,
                                 rbf_variance_isSamples, rv_shape,
                                 num_samples):

        net = nn.HybridSequential(prefix='nn_')
        with net.name_scope():
            net.add(
                nn.Dense(rv_shape[-1],
                         flatten=False,
                         activation="tanh",
                         in_units=X.shape[-1],
                         dtype=dtype))
        net.initialize(mx.init.Xavier(magnitude=3))

        X_mx = prepare_mxnet_array(X, X_isSamples, dtype)
        rbf_lengthscale_mx = prepare_mxnet_array(rbf_lengthscale,
                                                 rbf_lengthscale_isSamples,
                                                 dtype)
        rbf_variance_mx = prepare_mxnet_array(rbf_variance,
                                              rbf_variance_isSamples, dtype)
        mean_mx = net(X_mx)
        mean_np = mean_mx.asnumpy()

        rand = np.random.randn(num_samples, *rv_shape)
        rand_gen = MockMXNetRandomGenerator(
            mx.nd.array(rand.flatten(), dtype=dtype))

        rbf = RBF(2, True, 1., 1., 'rbf', None, dtype)
        X_var = Variable(shape=(5, 2))
        mean_func = MXFusionGluonFunction(net,
                                          num_outputs=1,
                                          broadcastable=True)
        mean_var = mean_func(X_var)
        gp = GaussianProcess.define_variable(X=X_var,
                                             kernel=rbf,
                                             shape=rv_shape,
                                             mean=mean_var,
                                             dtype=dtype,
                                             rand_gen=rand_gen).factor

        variables = {
            gp.X.uuid: X_mx,
            gp.rbf_lengthscale.uuid: rbf_lengthscale_mx,
            gp.rbf_variance.uuid: rbf_variance_mx,
            gp.mean.uuid: mean_mx
        }
        samples_rt = gp.draw_samples(F=mx.nd,
                                     variables=variables,
                                     num_samples=num_samples).asnumpy()

        samples_np = []
        for i in range(num_samples):
            X_i = X[i] if X_isSamples else X
            lengthscale_i = rbf_lengthscale[
                i] if rbf_lengthscale_isSamples else rbf_lengthscale
            variance_i = rbf_variance[
                i] if rbf_variance_isSamples else rbf_variance
            rand_i = rand[i]
            rbf_np = GPy.kern.RBF(input_dim=2, ARD=True)
            rbf_np.lengthscale = lengthscale_i
            rbf_np.variance = variance_i
            K_np = rbf_np.K(X_i)
            L_np = np.linalg.cholesky(K_np)
            sample_np = L_np.dot(rand_i)
            samples_np.append(sample_np)
        samples_np = np.array(samples_np) + mean_np

        assert np.issubdtype(samples_rt.dtype, dtype)
        assert get_num_samples(mx.nd, samples_rt) == num_samples
        assert np.allclose(samples_np, samples_rt)
Beispiel #29
0
    def test_log_pdf_w_mean(self, dtype, X, X_isSamples, rbf_lengthscale,
                            rbf_lengthscale_isSamples, rbf_variance,
                            rbf_variance_isSamples, rv, rv_isSamples,
                            num_samples):

        net = nn.HybridSequential(prefix='nn_')
        with net.name_scope():
            net.add(
                nn.Dense(rv.shape[-1],
                         flatten=False,
                         activation="tanh",
                         in_units=X.shape[-1],
                         dtype=dtype))
        net.initialize(mx.init.Xavier(magnitude=3))

        X_mx = prepare_mxnet_array(X, X_isSamples, dtype)
        rbf_lengthscale_mx = prepare_mxnet_array(rbf_lengthscale,
                                                 rbf_lengthscale_isSamples,
                                                 dtype)
        rbf_variance_mx = prepare_mxnet_array(rbf_variance,
                                              rbf_variance_isSamples, dtype)
        rv_mx = prepare_mxnet_array(rv, rv_isSamples, dtype)
        rv_shape = rv.shape[1:] if rv_isSamples else rv.shape
        mean_mx = net(X_mx)
        mean_np = mean_mx.asnumpy()

        rbf = RBF(2, True, 1., 1., 'rbf', None, dtype)
        X_var = Variable(shape=(5, 2))
        mean_func = MXFusionGluonFunction(net,
                                          num_outputs=1,
                                          broadcastable=True)
        mean_var = mean_func(X_var)
        gp = GaussianProcess.define_variable(X=X_var,
                                             kernel=rbf,
                                             shape=rv_shape,
                                             mean=mean_var,
                                             dtype=dtype).factor

        variables = {
            gp.X.uuid: X_mx,
            gp.rbf_lengthscale.uuid: rbf_lengthscale_mx,
            gp.rbf_variance.uuid: rbf_variance_mx,
            gp.random_variable.uuid: rv_mx,
            gp.mean.uuid: mean_mx
        }
        log_pdf_rt = gp.log_pdf(F=mx.nd, variables=variables).asnumpy()

        log_pdf_np = []
        for i in range(num_samples):
            X_i = X[i] if X_isSamples else X
            lengthscale_i = rbf_lengthscale[
                i] if rbf_lengthscale_isSamples else rbf_lengthscale
            variance_i = rbf_variance[
                i] if rbf_variance_isSamples else rbf_variance
            rv_i = rv[i] if rv_isSamples else rv
            rv_i = rv_i - mean_np[i] if X_isSamples else rv_i - mean_np[0]
            rbf_np = GPy.kern.RBF(input_dim=2, ARD=True)
            rbf_np.lengthscale = lengthscale_i
            rbf_np.variance = variance_i
            K_np = rbf_np.K(X_i)
            log_pdf_np.append(
                multivariate_normal.logpdf(rv_i[:, 0], mean=None, cov=K_np))
        log_pdf_np = np.array(log_pdf_np)
        isSamples_any = any([
            X_isSamples, rbf_lengthscale_isSamples, rbf_variance_isSamples,
            rv_isSamples
        ])
        assert np.issubdtype(log_pdf_rt.dtype, dtype)
        assert array_has_samples(mx.nd, log_pdf_rt) == isSamples_any
        if isSamples_any:
            assert get_num_samples(mx.nd, log_pdf_rt) == num_samples
        assert np.allclose(log_pdf_np, log_pdf_rt)
Beispiel #30
0
 def test_success(self):
     self.setUp()
     f = MXFusionGluonFunction(self.net, num_outputs=1)
     x = Variable()
     y = f(x)