Beispiel #1
0
def transform_predict(data, data_shape=(3, 331, 331), resize=331):
    ctx = data.context
    im = resize_longer(data.asnumpy(), resize, data_shape)
    im = nd.array(im, ctx=ctx)

    im = im.astype('float32') / 255
    auglist = [
        # image.RandomGrayAug(1.0),
        image.ColorNormalizeAug(mean=(0.417, 0.402, 0.366),
                                std=(0.081, 0.079, 0.080)),
    ]

    for aug in auglist:
        im = aug(im)
    im = nd.transpose(im, (2, 0, 1))
    return nd.stack(im)
Beispiel #2
0
def transform_val(data, label, data_shape=(3, 331, 331), resize=331):
    # im = data.astype('float32') / 255,
    ctx = data.context
    im = resize_longer(data.asnumpy(), resize, data_shape)
    im = nd.array(im, ctx=ctx)

    im = im.astype('float32') / 255
    auglist = [
        # image.RandomGrayAug(1.0),
        # image.ColorNormalizeAug(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
        image.ColorNormalizeAug(mean=(0.417, 0.402, 0.366),
                                std=(0.081, 0.079, 0.080)),
    ]

    for aug in auglist:
        im = aug(im)
    # im = im.clip(0, 1)
    im = nd.transpose(im, (2, 0, 1))
    return im, nd.array([label], ctx=ctx).asscalar()
Beispiel #3
0
def transform_train_DA3(data, label):
    im = data.astype(np.float32) / 255
    auglist = [image.RandomSizedCropAug(size=(32, 32), min_area=0.49, ratio=(0.5, 2))]
    _aug = image.CreateAugmenter(data_shape=(3, 32, 32), resize=0,
                                 rand_crop=False, rand_resize=False, rand_mirror=True,
                                 #                                mean=np.array([0.4914, 0.4822, 0.4465]),
                                 #                                std=np.array([0.2023, 0.1994, 0.2010]),
                                 brightness=0.3, contrast=0.3, saturation=0.3, hue=0.3,
                                 pca_noise=0.01, rand_gray=0, inter_method=2)
    auglist.append(image.RandomOrderAug(_aug))

    for aug in auglist:
        im = aug(im)

    if random.random() > random_clip_rate:
        im = im.clip(0, 1)
    _aug = image.ColorNormalizeAug(mean=np.array([0.4914, 0.4822, 0.4465]),
                                   std=np.array([0.2023, 0.1994, 0.2010]), )
    im = _aug(im)

    im = nd.transpose(im, (2, 0, 1))
    return (im, nd.array([label]).asscalar().astype('float32'))
Beispiel #4
0
def transform_train(data, label, data_shape=(3, 363, 363), resize=363):
    # data [height, width, channel]
    # im = data.astype('float32') / 255,
    ctx = data.context
    im = resize_longer(data.asnumpy(), resize, data_shape)
    im = rotate_image(im)
    im = nd.array(im, ctx=ctx)
    im = im.astype('float32') / 255

    auglist = [
        image.RandomCropAug((331, 331)),
        image.ColorJitterAug(0.3, 0.3, 0.3),
        image.RandomGrayAug(0.5),
        # image.ColorNormalizeAug(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
        image.ColorNormalizeAug(mean=(0.417, 0.402, 0.366),
                                std=(0.081, 0.079, 0.080)),
    ]

    for aug in auglist:
        im = aug(im)
    # im = im.clip(0, 1)
    im = nd.transpose(im, (2, 0, 1))
    return im, nd.array([label], ctx=ctx).asscalar()
import gc
from tqdm import tqdm
from sklearn.model_selection import train_test_split

# In[ ]:

# try run via gpu
ctx = mx.gpu()

# In[ ]:

transformers = [
    # 强制resize成pretrain模型的输入大小
    image.ForceResizeAug((224, 224)),
    # 标准化处理
    image.ColorNormalizeAug(mean=nd.array([0.485, 0.456, 0.406]),
                            std=nd.array([0.229, 0.224, 0.225]))
]

# Transoform image and label to our target format data
#
# 为避免过拟合,我们在这里使用`image.CreateAugmenter`来加强数据集。例如我们设`rand_mirror=True`即可随机对每张图片做镜面反转。我们也通过`mean`和`std`对彩色图像RGB三个通道分别做标准化。以下我们列举了该函数里的所有参数,这些参数都是可以调的。

# In[ ]:

train_augs_params = {
    "resize": 1,
    "rand_crop": False,
    "rand_resize": False,
    "rand_mirror": True,
    "mean": np.array([0.4914, 0.4822, 0.4465]),
    "std": np.array([0.2023, 0.1994, 0.2010]),