def _bbox_subnet(self, conv_feat, conv_channel, num_base_anchor, num_class): p = self.p # regression subnet bbox_conv1 = X.conv( data=conv_feat, kernel=3, filter=conv_channel, weight=self.bbox_conv1_weight, bias=self.bbox_conv1_bias, no_bias=False, name="bbox_conv1" ) bbox_conv1_relu = X.relu(bbox_conv1) bbox_conv2 = X.conv( data=bbox_conv1_relu, kernel=3, filter=conv_channel, weight=self.bbox_conv2_weight, bias=self.bbox_conv2_bias, no_bias=False, name="bbox_conv2" ) bbox_conv2_relu = X.relu(bbox_conv2) bbox_conv3 = X.conv( data=bbox_conv2_relu, kernel=3, filter=conv_channel, weight=self.bbox_conv3_weight, bias=self.bbox_conv3_bias, no_bias=False, name="bbox_conv3" ) bbox_conv3_relu = X.relu(bbox_conv3) bbox_conv4 = X.conv( data=bbox_conv3_relu, kernel=3, filter=conv_channel, weight=self.bbox_conv4_weight, bias=self.bbox_conv4_bias, no_bias=False, name="bbox_conv4" ) bbox_conv4_relu = X.relu(bbox_conv4) if p.fp16: bbox_conv4_relu = X.to_fp32(bbox_conv4_relu, name="bbox_conv4_fp32") output_channel = num_base_anchor * 4 output = X.conv( data=bbox_conv4_relu, kernel=3, filter=output_channel, weight=self.bbox_pred_weight, bias=self.bbox_pred_bias, no_bias=False, name="bbox_pred" ) return output
def se_v2_resnet_v1b_unit(input, name, filter, stride, dilate, proj, norm, **kwargs): """ diff with v1: move the SE module to 3x3 conv """ conv1 = conv(input, name=name + "_conv1", filter=filter // 4) bn1 = norm(conv1, name=name + "_bn1") relu1 = relu(bn1, name=name + "_relu1") conv2 = conv(relu1, name=name + "_conv2", stride=stride, filter=filter // 4, kernel=3) bn2 = norm(conv2, name=name + "_bn2") relu2 = relu(bn2, name=name + "_relu2") relu2 = se(relu2, prefix=name + "_se2", f_down=filter // 16, f_up=filter // 4) conv3 = conv(relu2, name=name + "_conv3", filter=filter) bn3 = norm(conv3, name=name + "_bn3") if proj: shortcut = conv(input, name=name + "_sc", filter=filter, stride=stride) shortcut = norm(shortcut, name=name + "_sc_bn") else: shortcut = input eltwise = add(bn3, shortcut, name=name + "_plus") return relu(eltwise, name=name + "_relu")
def _cls_subnet(self, conv_feat, conv_channel, num_base_anchor, num_class): p = self.p # classification subnet cls_conv1 = X.conv( data=conv_feat, kernel=3, filter=conv_channel, weight=self.cls_conv1_weight, bias=self.cls_conv1_bias, no_bias=False, name="cls_conv1" ) cls_conv1_relu = X.relu(cls_conv1) cls_conv2 = X.conv( data=cls_conv1_relu, kernel=3, filter=conv_channel, weight=self.cls_conv2_weight, bias=self.cls_conv2_bias, no_bias=False, name="cls_conv2" ) cls_conv2_relu = X.relu(cls_conv2) cls_conv3 = X.conv( data=cls_conv2_relu, kernel=3, filter=conv_channel, weight=self.cls_conv3_weight, bias=self.cls_conv3_bias, no_bias=False, name="cls_conv3" ) cls_conv3_relu = X.relu(cls_conv3) cls_conv4 = X.conv( data=cls_conv3_relu, kernel=3, filter=conv_channel, weight=self.cls_conv4_weight, bias=self.cls_conv4_bias, no_bias=False, name="cls_conv4" ) cls_conv4_relu = X.relu(cls_conv4) if p.fp16: cls_conv4_relu = X.to_fp32(cls_conv4_relu, name="cls_conv4_fp32") output_channel = num_base_anchor * (num_class - 1) output = X.conv( data=cls_conv4_relu, kernel=3, filter=output_channel, weight=self.cls_pred_weight, bias=self.cls_pred_bias, no_bias=False, name="cls_pred" ) return output
def get_output(self, conv_feat): if self._cls_logit is not None and self._bbox_delta is not None: return self._cls_logit, self._bbox_delta p = self.p num_base_anchor = len(p.anchor_generate.ratio) * len( p.anchor_generate.scale) conv_channel = p.head.conv_channel conv = X.convrelu(conv_feat, kernel=3, filter=conv_channel, name="rpn_conv_3x3", no_bias=False, init=X.gauss(0.01)) if p.fp16: conv = X.to_fp32(conv, name="rpn_conv_3x3_fp32") cls_logit = X.conv(conv, filter=2 * num_base_anchor, name="rpn_cls_logit", no_bias=False, init=X.gauss(0.01)) bbox_delta = X.conv(conv, filter=4 * num_base_anchor, name="rpn_bbox_delta", no_bias=False, init=X.gauss(0.01)) self._cls_logit = cls_logit self._bbox_delta = bbox_delta return self._cls_logit, self._bbox_delta
def conv_shared(data, name, kernel, num_filter, branch_ids=None, no_bias=True, share_weight=True, pad=(0, 0), stride=(1, 1), dilate=(1, 1)): if branch_ids is None: branch_ids = range(len(data)) weight = X.var(name + '_weight') if no_bias: bias = None else: bias = X.var(name + '_bias') conv_layers = [] for i in range(len(data)): data_i = data[i] stride_i = stride[i] if type(stride) is list else stride dilate_i = dilate[i] if type(dilate) is list else dilate pad_i = pad[i] if type(pad) is list else pad branch_i = branch_ids[i] if share_weight: conv_i = X.conv(data=data_i, kernel=kernel, filter=num_filter, stride=stride_i, dilate=dilate_i, pad=pad_i, name=name + '_shared%d' % branch_i, no_bias=no_bias, weight=weight, bias=bias) else: conv_i = X.conv(data=data_i, kernel=kernel, filter=num_filter, stride=stride_i, dilate=dilate_i, pad=pad_i, name=name + '_branch%d' % branch_i, no_bias=no_bias) conv_layers.append(conv_i) return conv_layers
def mbconv(input, prefix, kernel, f_in, f_out, stride, proj, bottleneck_ratio, norm, **kwargs): with mx.name.Prefix(prefix + "_"): if bottleneck_ratio != 1: conv1 = conv(input, name="conv1", filter=f_in * bottleneck_ratio, no_bias=False) bn1 = norm(conv1, name="bn1") relu1 = relu6(bn1, name="relu1") else: relu1 = input conv2 = dwconv(relu1, name="conv2", filter=f_in * bottleneck_ratio, kernel=kernel, stride=stride, no_bias=False) bn2 = norm(conv2, name="bn2") relu2 = relu6(bn2, name="relu2") relu2 = se(relu2, prefix=prefix + "_se2", f_down=f_in // 4, f_up=f_in * bottleneck_ratio) conv3 = conv(relu2, name="conv3", filter=f_out, no_bias=False) bn3 = norm(conv3, name="bn3") if proj: return bn3 else: return bn3 + input
def dcn_resnet_unit(input, name, filter, stride, dilate, proj, norm, **kwargs): conv1 = conv(input, name=name + "_conv1", filter=filter // 4) bn1 = norm(conv1, name=name + "_bn1") relu1 = relu(bn1, name=name + "_relu1") # conv2 filter router conv2_offset = conv(relu1, name=name + "_conv2_offset", filter=72, kernel=3, stride=stride, dilate=dilate) conv2 = mx.sym.contrib.DeformableConvolution(relu1, conv2_offset, kernel=(3, 3), stride=(stride, stride), dilate=(dilate, dilate), pad=(1, 1), num_filter=filter // 4, num_deformable_group=4, no_bias=True, name=name + "_conv2") bn2 = norm(conv2, name=name + "_bn2") relu2 = relu(bn2, name=name + "_relu2") conv3 = conv(relu2, name=name + "_conv3", filter=filter) bn3 = norm(conv3, name=name + "_bn3") if proj: shortcut = conv(input, name=name + "_sc", filter=filter, stride=stride) shortcut = norm(shortcut, name=name + "_sc_bn") else: shortcut = input eltwise = add(bn3, shortcut, name=name + "_plus") return relu(eltwise, name=name + "_relu")
def trident_resnet_v1b_unit(input, name, id, filter, stride, dilate, proj, **kwargs): """ Compared with v1, v1b moves stride=2 to the 3x3 conv instead of the 1x1 conv and use std in pre-processing This is also known as the facebook re-implementation of ResNet(a.k.a. the torch ResNet) """ p = kwargs["params"] share_bn = p.branch_bn_shared share_conv = p.branch_conv_shared norm = p.normalizer ######################### prepare names ######################### if id is not None: conv_postfix = ("_shared%s" if share_conv else "_branch%s") % id bn_postfix = ("_shared%s" if share_bn else "_branch%s") % id other_postfix = "_branch%s" % id else: conv_postfix = "" bn_postfix = "" other_postfix = "" ######################### prepare parameters ######################### conv_params = lambda x: dict( weight=X.shared_var(name + "_%s_weight" % x) if share_conv else None, name=name + "_%s" % x + conv_postfix ) def bn_params(x): ret = dict( gamma=X.shared_var(name + "_%s_gamma" % x) if share_bn else None, beta=X.shared_var(name + "_%s_beta" % x) if share_bn else None, moving_mean=X.shared_var(name + "_%s_moving_mean" % x) if share_bn else None, moving_var=X.shared_var(name + "_%s_moving_var" % x) if share_bn else None, name=name + "_%s" % x + bn_postfix ) if norm.__name__ == "gn": del ret["moving_mean"], ret["moving_var"] return ret ######################### construct graph ######################### conv1 = conv(input, filter=filter // 4, **conv_params("conv1")) bn1 = norm(conv1, **bn_params("bn1")) relu1 = relu(bn1, name=name + other_postfix) conv2 = conv(relu1, filter=filter // 4, kernel=3, stride=stride, dilate=dilate, **conv_params("conv2")) bn2 = norm(conv2, **bn_params("bn2")) relu2 = relu(bn2, name=name + other_postfix) conv3 = conv(relu2, filter=filter, **conv_params("conv3")) bn3 = norm(conv3, **bn_params("bn3")) if proj: shortcut = conv(input, filter=filter, stride=stride, **conv_params("sc")) shortcut = norm(shortcut, **bn_params("sc_bn")) else: shortcut = input eltwise = add(bn3, shortcut, name=name + "_plus" + other_postfix) return relu(eltwise, name=name + "_relu" + other_postfix)
def get_output(self, conv_fpn_feat): if self.cls_logit_dict is not None and self.bbox_delta_dict is not None: return self.cls_logit_dict, self.bbox_delta_dict p = self.p num_base_anchor = len(p.anchor_generate.ratio) * len(p.anchor_generate.scale) conv_channel = p.head.conv_channel # FPN RPN share weight rpn_conv_weight = X.var('rpn_conv_weight', init=X.gauss(0.01)) rpn_conv_bias = X.var('rpn_conv_bias', init=X.zero_init()) rpn_conv_cls_weight = X.var('rpn_conv_cls_weight', init=X.gauss(0.01)) rpn_conv_cls_bias = X.var('rpn_conv_cls_bias', init=X.zero_init()) rpn_conv_bbox_weight = X.var('rpn_conv_bbox_weight', init=X.gauss(0.01)) rpn_conv_bbox_bias = X.var('rpn_conv_bbox_bias', init=X.zero_init()) cls_logit_dict = {} bbox_delta_dict = {} for stride in p.anchor_generate.stride: rpn_conv = X.conv( conv_fpn_feat['stride%s' % stride], kernel=3, filter=conv_channel, name="rpn_conv_3x3_%s" % stride, no_bias=False, weight=rpn_conv_weight, bias=rpn_conv_bias ) rpn_relu = X.relu(rpn_conv, name='rpn_relu_%s' % stride) if p.fp16: rpn_relu = X.to_fp32(rpn_relu, name="rpn_relu_%s_fp32" % stride) cls_logit = X.conv( rpn_relu, filter=2 * num_base_anchor, name="rpn_cls_score_stride%s" % stride, no_bias=False, weight=rpn_conv_cls_weight, bias=rpn_conv_cls_bias ) bbox_delta = X.conv( rpn_relu, filter=4 * num_base_anchor, name="rpn_bbox_pred_stride%s" % stride, no_bias=False, weight=rpn_conv_bbox_weight, bias=rpn_conv_bbox_bias ) cls_logit_dict[stride] = cls_logit bbox_delta_dict[stride] = bbox_delta self.cls_logit_dict = cls_logit_dict self.bbox_delta_dict = bbox_delta_dict return self.cls_logit_dict, self.bbox_delta_dict
def sepc_conv(x, name, out_channels, kernel_size, i, stride=1, padding=0, dilation=1, groups=1, deformable_groups=1, part_deform=False, start_level=1, weight=None, bias=None, weight_offset=None, bias_offset=None): assert weight is not None and bias is not None if part_deform: assert weight_offset is not None and bias_offset is not None if i < start_level or not part_deform: return conv(x, name, filter=out_channels, kernel=kernel_size, stride=stride, pad=kernel_size // 2, dilate=dilation, num_group=groups, no_bias=False, weight=weight, bias=bias) offset = conv(x, name + 'offset', filter=deformable_groups * 2 * kernel_size * kernel_size, kernel=kernel_size, stride=stride, pad=kernel_size // 2, dilate=dilation, num_group=groups, no_bias=False, weight=weight_offset, bias=bias_offset) return DeformConv(x, offset, name, out_channels, kernel_size, stride, padding=padding, dilation=dilation, groups=groups, deformable_groups=deformable_groups, no_bias=False, weight=weight, bias=bias)
def se(input, prefix, f_down, f_up): with mx.name.Prefix(prefix + "_"): gap = mx.sym.mean(input, axis=-1, keepdims=True) gap = mx.sym.mean(gap, axis=-2, keepdims=True) fc1 = conv(gap, name="fc1", filter=f_down) fc1 = relu6(fc1, name="fc1_relu") fc2 = conv(fc1, name="fc2", filter=f_up) att = sigmoid(fc2, name="sigmoid") input = mx.sym.broadcast_mul(input, att, name="mul") return input
def get_output(self, conv_feat): if self._cls_logit is not None and self._bbox_delta is not None: return self._cls_logit, self._bbox_delta p = self.p num_base_anchor = len(p.anchor_generate.ratio) * len(p.anchor_generate.scale) conv_channel = p.head.conv_channel if p.normalizer.__name__ == "fix_bn": conv = X.convrelu( conv_feat, kernel=3, filter=conv_channel, name="rpn_conv_3x3", no_bias=False, init=X.gauss(0.01) ) elif p.normalizer.__name__ in ["sync_bn", "gn"]: conv = X.convnormrelu( p.normalizer, conv_feat, kernel=3, filter=conv_channel, name="rpn_conv_3x3", no_bias=False, init=X.gauss(0.01) ) else: raise NotImplementedError("Unsupported normalizer: {}".format(p.normalizer.__name__)) if p.fp16: conv = X.to_fp32(conv, name="rpn_conv_3x3_fp32") cls_logit = X.conv( conv, filter=2 * num_base_anchor, name="rpn_cls_logit", no_bias=False, init=X.gauss(0.01) ) bbox_delta = X.conv( conv, filter=4 * num_base_anchor, name="rpn_bbox_delta", no_bias=False, init=X.gauss(0.01) ) self._cls_logit = cls_logit self._bbox_delta = bbox_delta return self._cls_logit, self._bbox_delta
def trident_resnet_v1_unit(input, name, id, filter, stride, dilate, proj, **kwargs): p = kwargs["params"] share_bn = p.branch_bn_shared share_conv = p.branch_conv_shared norm = p.normalizer ######################### prepare names ######################### if id is not None: conv_postfix = ("_shared%s" if share_conv else "_branch%s") % id bn_postfix = ("_shared%s" if share_bn else "_branch%s") % id other_postfix = "_branch%s" % id else: conv_postfix = "" bn_postfix = "" other_postfix = "" ######################### prepare parameters ######################### conv_params = lambda x: dict( weight=X.shared_var(name + "_%s_weight" % x) if share_conv else None, name=name + "_%s" % x + conv_postfix ) bn_params = lambda x: dict( gamma=X.shared_var(name + "_%s_gamma" % x) if share_bn else None, beta=X.shared_var(name + "_%s_beta" % x) if share_bn else None, moving_mean=X.shared_var(name + "_%s_moving_mean" % x) if share_bn else None, moving_var=X.shared_var(name + "_%s_moving_var" % x) if share_bn else None, name=name + "_%s" % x + bn_postfix ) ######################### construct graph ######################### conv1 = conv(input, filter=filter // 4, stride=stride, **conv_params("conv1")) bn1 = norm(conv1, **bn_params("bn1")) relu1 = relu(bn1, name=name + other_postfix) conv2 = conv(relu1, filter=filter // 4, kernel=3, dilate=dilate, **conv_params("conv2")) bn2 = norm(conv2, **bn_params("bn2")) relu2 = relu(bn2, name=name + other_postfix) conv3 = conv(relu2, filter=filter, **conv_params("conv3")) bn3 = norm(conv3, **bn_params("bn3")) if proj: shortcut = conv(input, filter=filter, stride=stride, **conv_params("sc")) shortcut = norm(shortcut, **bn_params("sc_bn")) else: shortcut = input eltwise = add(bn3, shortcut, name=name + "_plus" + other_postfix) return relu(eltwise, name=name + "_relu" + other_postfix)
def _refine_pts(self, cls_feat, reg_feat, dcn_offset, pts_init_out): p = self.p point_conv_channel = p.head.point_conv_channel num_class = p.num_class output_channel = num_class - 1 pts_output_channel = p.point_generate.num_points * 2 cls_conv = mx.symbol.contrib.DeformableConvolution( data=cls_feat, offset=dcn_offset, kernel=(self.dcn_kernel, self.dcn_kernel), pad=(self.dcn_pad, self.dcn_pad), stride=(1, 1), dilate=(1, 1), num_filter=point_conv_channel, weight=self.cls_conv_weight, bias=self.cls_conv_bias, no_bias=False, name="cls_conv") cls_conv_relu = X.relu(cls_conv) cls_out = X.conv(data=cls_conv_relu, kernel=1, filter=output_channel, weight=self.cls_out_weight, bias=self.cls_out_bias, no_bias=False, name="cls_out") pts_refine_conv = mx.symbol.contrib.DeformableConvolution( data=reg_feat, offset=dcn_offset, kernel=(self.dcn_kernel, self.dcn_kernel), pad=(self.dcn_pad, self.dcn_pad), stride=(1, 1), dilate=(1, 1), num_filter=point_conv_channel, weight=self.pts_refine_conv_weight, bias=self.pts_refine_conv_bias, no_bias=False, name="pts_refine_conv") pts_refine_conv_relu = X.relu(pts_refine_conv) pts_refine_out = X.conv(data=pts_refine_conv_relu, kernel=1, filter=pts_output_channel, weight=self.pts_refine_out_weight, bias=self.pts_refine_out_bias, no_bias=False, name="pts_refine_out") pts_refine_out = pts_refine_out + X.block_grad(pts_init_out) return pts_refine_out, cls_out
def _get_bbox_head_logit(self, conv_feat): if self._head_feat is not None: return self._head_feat xavier_init = mx.init.Xavier(factor_type="in", rnd_type="uniform", magnitude=3) flatten = X.reshape(conv_feat, shape=(0, -1, 1, 1), name="bbox_feat_reshape") fc1 = X.conv(flatten, filter=1024, name="bbox_fc1", init=xavier_init) fc1 = self.add_norm(fc1) fc1 = X.relu(fc1) fc2 = X.conv(fc1, filter=1024, name="bbox_fc2", init=xavier_init) fc2 = self.add_norm(fc2) fc2 = X.relu(fc2) self._head_feat = fc2 return self._head_feat
def _get_output(self, mask_pred_logits, conv_feat): num_class = self.pBbox.num_class msra_init = mx.init.Xavier(rnd_type="gaussian", factor_type="out", magnitude=2) normal_init = mx.init.Normal(0.01) kaiming_uniform = mx.init.Xavier(rnd_type='uniform', factor_type='in', magnitude=3) mask_pred_logits = mx.sym.expand_dims(mask_pred_logits, axis=1) iou_head_maxpool_1 = X.pool( mask_pred_logits, name='iou_head_maxpool_1', kernel=2, stride=2, pad=0, ) iou_head_input = X.concat([conv_feat, iou_head_maxpool_1], axis=1, name='iou_head_input') hi = iou_head_input for ii in range(3): hi = X.conv( hi, filter=256, kernel=3, stride=1, name='iou_head_conv_%d'%ii, no_bias=False, init=msra_init, ) hi = X.relu(hi) hi = X.conv( hi, filter=256, kernel=3, stride=2, name='iou_head_conv_3', no_bias=False, init=msra_init ) hi = X.relu(hi) hi = X.flatten(data=hi) fc1 = X.relu(X.fc(hi, filter=1024, name='iou_head_FC1', init=kaiming_uniform)) fc2 = X.relu(X.fc(fc1, filter=1024, name='iou_head_FC2', init=kaiming_uniform)) iou_pred_logits = X.fc(fc2, filter=num_class, name='iou_head_pred', init=normal_init) return iou_pred_logits
def get_P0_features(c_features, p_names, dim_reduced, init, norm): p_features = {} for c_feature, p_name in zip(c_features, p_names): p = X.conv(data=c_feature, filter=dim_reduced, no_bias=False, weight=X.var(name=p_name + "_weight", init=init), bias=X.var(name=p_name + "_bias", init=X.zero_init()), name=p_name) p = norm(p, name=p_name + '_bn') p_features[p_name] = p return p_features
def convnormrelu(input, prefix, kernel, f_in, f_out, stride, proj, norm, **kwargs): with mx.name.Prefix(prefix + "_"): conv1 = conv(input, name="conv1", filter=f_out, kernel=kernel, stride=stride, no_bias=False) bn1 = norm(conv1, name="bn1") relu1 = relu6(bn1, name="relu1") return relu1
def _init_pts(self, reg_feat): p = self.p point_conv_channel = p.head.point_conv_channel pts_output_channel = p.point_generate.num_points * 2 pts_init_conv = X.conv(data=reg_feat, kernel=3, filter=point_conv_channel, weight=self.pts_init_conv_weight, bias=self.pts_init_conv_bias, no_bias=False, name="pts_init_conv") pts_init_conv_relu = X.relu(pts_init_conv) pts_init_out = X.conv(data=pts_init_conv_relu, kernel=1, filter=pts_output_channel, weight=self.pts_init_out_weight, bias=self.pts_init_out_bias, no_bias=False, name="pts_init_out") return pts_init_out
def _reg_head(self, conv_feat): num_block = self.p.num_block or 4 for i in range(num_block): conv_feat = X.conv(conv_feat, kernel=3, filter=256, init=X.gauss(0.01), name="bbox_reg_block%s" % (i + 1)) conv_feat = self.add_norm(conv_feat) conv_feat = X.relu(conv_feat) return conv_feat
def _convs_and_fcs(self, x, num_convs, num_fcs, name, conv_init, fc_init): ''' Args: x: [N, C, H, W] feature maps num_convs: int num_fcs: int conv_init: mx initializer Returns: x: [N, C, H, W] or [N, C, 1, 1] ''' if num_convs == 0 and num_fcs == 0: return x out_channels = self.p.TSD.conv_out_channels out_fc_channels = self.p.TSD.fc_out_channels if num_convs > 0: for i in range(num_convs): x = X.relu( X.conv(x, kernel=3, filter=out_channels, no_bias=False, name=name + '_conv%s' % i, init=conv_init)) if num_fcs > 0: x = X.reshape(x, shape=(0, -1, 1, 1), name=name + '_conv_fc_flatten') for i in range(num_fcs): x = X.relu( X.conv(x, kernel=1, filter=out_fc_channels, no_bias=False, name=name + '_fc%s' % i, init=fc_init)) return x
def _cls_subnet(self, conv_feat, stride): p = self.p norm = p.normalizer conv_channel = p.head.conv_channel # classification subset cls_conv1 = X.conv(data=conv_feat, kernel=3, filter=conv_channel, weight=self.cls_conv1_weight, bias=self.cls_conv1_bias, no_bias=False, name="cls_conv1") cls_conv1 = norm(cls_conv1, name="cls_conv1_bn_s{}".format(stride)) cls_conv1_relu = X.relu(cls_conv1) cls_conv2 = X.conv(data=cls_conv1_relu, kernel=3, filter=conv_channel, weight=self.cls_conv2_weight, bias=self.cls_conv2_bias, no_bias=False, name="cls_conv2") cls_conv2 = norm(cls_conv2, name="cls_conv2_bn_s{}".format(stride)) cls_conv2_relu = X.relu(cls_conv2) cls_conv3 = X.conv(data=cls_conv2_relu, kernel=3, filter=conv_channel, weight=self.cls_conv3_weight, bias=self.cls_conv3_bias, no_bias=False, name="cls_conv3") cls_conv3 = norm(cls_conv3, name="cls_conv3_bn_s{}".format(stride)) cls_conv3_relu = X.relu(cls_conv3) if p.fp16: cls_conv3_relu = X.to_fp32(cls_conv3_relu, name="cls_conv3_fp32") return cls_conv3_relu
def _reg_subnet(self, conv_feat, stride): p = self.p norm = p.normalizer conv_channel = p.head.conv_channel # regression subnet reg_conv1 = X.conv(data=conv_feat, kernel=3, filter=conv_channel, weight=self.reg_conv1_weight, bias=self.reg_conv1_bias, no_bias=False, name="reg_conv1") reg_conv1 = norm(reg_conv1, name="reg_conv1_bn_s{}".format(stride)) reg_conv1_relu = X.relu(reg_conv1) reg_conv2 = X.conv(data=reg_conv1_relu, kernel=3, filter=conv_channel, weight=self.reg_conv2_weight, bias=self.reg_conv2_bias, no_bias=False, name="reg_conv2") reg_conv2 = norm(reg_conv2, name="reg_conv2_bn_s{}".format(stride)) reg_conv2_relu = X.relu(reg_conv2) reg_conv3 = X.conv(data=reg_conv2_relu, kernel=3, filter=conv_channel, weight=self.reg_conv3_weight, bias=self.reg_conv3_bias, no_bias=False, name="reg_conv3") reg_conv3 = norm(reg_conv3, name="reg_conv3_bn_s{}".format(stride)) reg_conv3_relu = X.relu(reg_conv3) if p.fp16: reg_conv3_relu = X.to_fp32(reg_conv3_relu, name="reg_conv3_fp32") return reg_conv3_relu
def _get_bbox_head_logit(self, conv_feat): #if self._head_feat is not None: # return self._head_feat stage = self.stage flatten = X.flatten(conv_feat, name="bbox_feat_flatten_" + stage) reshape = X.reshape(flatten, (0, 0, 1, 1), name="bbox_feat_reshape_" + stage) fc1 = X.conv(reshape, filter=1024, weight=self.fc1_weight, name="bbox_fc1_" + stage) fc1_relu = X.relu(fc1, name="bbox_fc1_relu_" + stage) fc2 = X.conv(fc1_relu, filter=1024, weight=self.fc2_weight, name="bbox_fc2_" + stage) fc2_relu = X.relu(fc2, name="bbox_fc2_" + stage) self._head_feat = fc2_relu return self._head_feat
def get_P0_features(c_features, p_names, dim_reduced, init, norm, kernel=1): p_features = [] for c_feature, p_name in zip(c_features, p_names): p = X.conv(data=c_feature, filter=dim_reduced, kernel=kernel, no_bias=False, weight=X.var(name=p_name + "_weight", init=init), bias=X.var(name=p_name + "_bias", init=X.zero_init()), name=p_name) p_features.append(p) return p_features
def _get_mask_head_logit(self, conv_feat): if self._head_feat is not None: return self._head_feat up_stride = int(self.pMask.resolution // self.pMaskRoi.out_size) dim_reduced = self.pMask.dim_reduced msra_init = mx.init.Xavier(rnd_type="gaussian", factor_type="out", magnitude=2) current = conv_feat for i in range(4): current = X.conv( current, name="mask_fcn_conv{}".format(i + 1), filter=dim_reduced, kernel=3, no_bias=False, init=msra_init ) current = self.add_norm(current) current = X.relu(current) mask_up = current for i in range(up_stride // 2): weight = X.var( name="mask_up{}_weight".format(i), init=msra_init, lr_mult=1, wd_mult=1) mask_up = mx.sym.Deconvolution( mask_up, kernel=(2, 2), stride=(2, 2), num_filter=dim_reduced, no_bias=False, weight=weight, name="mask_up{}".format(i) ) mask_up = X.relu( mask_up, name="mask_up{}_relu".format(i)) mask_up = X.to_fp32(mask_up, name='mask_up_to_fp32') self._head_feat = mask_up return self._head_feat
def get_output(self, conv_feat): pBbox = self.pBbox num_class = pBbox.num_class head_feat = self._get_mask_head_logit(conv_feat) msra_init = mx.init.Xavier(rnd_type="gaussian", factor_type="out", magnitude=2) if self.pMask: head_feat = X.to_fp32(head_feat, name="mask_head_to_fp32") mask_fcn_logit = X.conv( head_feat, filter=num_class, name="mask_fcn_logit", no_bias=False, init=msra_init ) return mask_fcn_logit
def _bbox_subnet(self, conv_feat, conv_channel, num_base_anchor, num_class, stride, nb_conv=0): p = self.p if nb_conv <= 0: bbox_conv4_relu = conv_feat if p.fp16: bbox_conv4_relu = X.to_fp32(bbox_conv4_relu, name="bbox_conv4_fp32") output_channel = num_base_anchor * 4 output = X.conv(data=bbox_conv4_relu, kernel=3, filter=output_channel, weight=self.bbox_pred_weight, bias=self.bbox_pred_bias, no_bias=False, name="bbox_pred") return output return super()._bbox_subnet(conv_feat, conv_channel, num_base_anchor, num_class, stride)
def fpn_neck(self, data): if self.fpn_feat is not None: return self.fpn_feat c2, c3, c4, c5 = data xavier_init = mx.init.Xavier(factor_type="in", rnd_type="uniform", magnitude=3) # P5 p5 = X.conv(data=c5, filter=256, no_bias=False, weight=X.var(name="P5_lateral_weight", init=xavier_init), bias=X.var(name="P5_lateral_bias", init=X.zero_init()), name="P5_lateral") p5 = self.add_norm(p5) p5_conv = X.conv(data=p5, kernel=3, filter=256, no_bias=False, weight=X.var(name="P5_conv_weight", init=xavier_init), bias=X.var(name="P5_conv_bias", init=X.zero_init()), name="P5_conv") p5_conv = self.add_norm(p5_conv) # P4 p5_up = mx.sym.UpSampling(p5, scale=2, sample_type="nearest", name="P5_upsampling", num_args=1) p4_la = X.conv(data=c4, filter=256, no_bias=False, weight=X.var(name="P4_lateral_weight", init=xavier_init), bias=X.var(name="P4_lateral_bias", init=X.zero_init()), name="P4_lateral") p4_la = self.add_norm(p4_la) p5_clip = mx.sym.slice_like(p5_up, p4_la, name="P4_clip") p4 = mx.sym.add_n(p5_clip, p4_la, name="P4_sum") p4_conv = X.conv(data=p4, kernel=3, filter=256, no_bias=False, weight=X.var(name="P4_conv_weight", init=xavier_init), bias=X.var(name="P4_conv_bias", init=X.zero_init()), name="P4_conv") p4_conv = self.add_norm(p4_conv) # P3 p4_up = mx.sym.UpSampling(p4, scale=2, sample_type="nearest", name="P4_upsampling", num_args=1) p3_la = X.conv(data=c3, filter=256, no_bias=False, weight=X.var(name="P3_lateral_weight", init=xavier_init), bias=X.var(name="P3_lateral_bias", init=X.zero_init()), name="P3_lateral") p3_la = self.add_norm(p3_la) p4_clip = mx.sym.slice_like(p4_up, p3_la, name="P3_clip") p3 = mx.sym.add_n(p4_clip, p3_la, name="P3_sum") p3_conv = X.conv(data=p3, kernel=3, filter=256, no_bias=False, weight=X.var(name="P3_conv_weight", init=xavier_init), bias=X.var(name="P3_conv_bias", init=X.zero_init()), name="P3_conv") p3_conv = self.add_norm(p3_conv) # P2 p3_up = mx.sym.UpSampling(p3, scale=2, sample_type="nearest", name="P3_upsampling", num_args=1) p2_la = X.conv(data=c2, filter=256, no_bias=False, weight=X.var(name="P2_lateral_weight", init=xavier_init), bias=X.var(name="P2_lateral_bias", init=X.zero_init()), name="P2_lateral") p2_la = self.add_norm(p2_la) p3_clip = mx.sym.slice_like(p3_up, p2_la, name="P2_clip") p2 = mx.sym.add_n(p3_clip, p2_la, name="P2_sum") p2_conv = X.conv(data=p2, kernel=3, filter=256, no_bias=False, weight=X.var(name="P2_conv_weight", init=xavier_init), bias=X.var(name="P2_conv_bias", init=X.zero_init()), name="P2_conv") p2_conv = self.add_norm(p2_conv) # P6 p6 = X.max_pool( p5_conv, name="P6_subsampling", kernel=1, stride=2, ) conv_fpn_feat = dict(stride64=p6, stride32=p5_conv, stride16=p4_conv, stride8=p3_conv, stride4=p2_conv) self.fpn_feat = conv_fpn_feat return self.fpn_feat
def get_retinanet_neck(self, data): if self.neck is not None: return self.neck c2, c3, c4, c5 = data import mxnet as mx xavier_init = mx.init.Xavier(factor_type="in", rnd_type="uniform", magnitude=3) # P5 p5 = X.conv(data=c5, filter=256, no_bias=False, weight=X.var(name="P5_lateral_weight", init=xavier_init), bias=X.var(name="P5_lateral_bias", init=X.zero_init()), name="P5_lateral") p5_conv = X.conv(data=p5, kernel=3, filter=256, no_bias=False, weight=X.var(name="P5_conv_weight", init=xavier_init), bias=X.var(name="P5_conv_bias", init=X.zero_init()), name="P5_conv") # P4 p5_up = mx.sym.UpSampling(p5, scale=2, sample_type="nearest", name="P5_upsampling", num_args=1) p4_la = X.conv(data=c4, filter=256, no_bias=False, weight=X.var(name="P4_lateral_weight", init=xavier_init), bias=X.var(name="P4_lateral_bias", init=X.zero_init()), name="P4_lateral") p5_clip = mx.sym.slice_like(p5_up, p4_la, name="P4_clip") p4 = mx.sym.add_n(p5_clip, p4_la, name="P4_sum") p4_conv = X.conv(data=p4, kernel=3, filter=256, no_bias=False, weight=X.var(name="P4_conv_weight", init=xavier_init), bias=X.var(name="P4_conv_bias", init=X.zero_init()), name="P4_conv") # P3 p4_up = mx.sym.UpSampling(p4, scale=2, sample_type="nearest", name="P4_upsampling", num_args=1) p3_la = X.conv(data=c3, filter=256, no_bias=False, weight=X.var(name="P3_lateral_weight", init=xavier_init), bias=X.var(name="P3_lateral_bias", init=X.zero_init()), name="P3_lateral") p4_clip = mx.sym.slice_like(p4_up, p3_la, name="P3_clip") p3 = mx.sym.add_n(p4_clip, p3_la, name="P3_sum") p3_conv = X.conv(data=p3, kernel=3, filter=256, no_bias=False, weight=X.var(name="P3_conv_weight", init=xavier_init), bias=X.var(name="P3_conv_bias", init=X.zero_init()), name="P3_conv") # P6 p6 = X.conv(data=c5, kernel=3, stride=2, filter=256, no_bias=False, weight=X.var(name="P6_conv_weight", init=xavier_init), bias=X.var(name="P6_conv_bias", init=X.zero_init()), name="P6_conv") # P7 p6_relu = X.relu(data=p6, name="P6_relu") p7 = X.conv(data=p6_relu, kernel=3, stride=2, filter=256, no_bias=False, weight=X.var(name="P7_conv_weight", init=xavier_init), bias=X.var(name="P7_conv_bias", init=X.zero_init()), name="P7_conv") self.neck = dict(stride8=p3_conv, stride16=p4_conv, stride32=p5_conv, stride64=p6, stride128=p7) return self.neck