Beispiel #1
0
    else:
        svm = SVC(gamma=0.1, C=10)
    # 特征标准化
    X_train_std = std.fit_transform(X_train)
    X_test_std = std.transform(X_test)
    # 训练模型
    svm.fit(X_train_std, Y_train)
    # 保存模型
    file_path = r'.\model\svm_model_30features\\' + str(
        signal_len) + 's-train_' + str(k + 1) + '-fold.pickle'
    with open(file_path, 'wb') as fw:
        pickle.dump(svm, fw)
    # 预测
    pred_testY = svm.predict(X_test_std)

    Se_test, Sp_test, ber = calc_ber(Y_test, pred_testY)
    Se_list.append(Se_test)
    Sp_list.append(Sp_test)
    ber_list.append(ber)

#保存实验结果
result = np.vstack([Se_list, Sp_list, ber_list])
np.save(r'important_data\svm_30features_result\svm_' + str(signal_len) + 's',
        result)

# 读取实验结果
result = np.load(r'important_data\svm_30features_result\svm_' +
                 str(signal_len) + 's.npy')
print('30features+svm,信号%ds' % (signal_len))
print('mean_Se:%.2f%%' % (np.mean(result[0, :])))
print('mean_Sp:%.2f%%' % (np.mean(result[1, :])))
                        Y_train_oh,
                        batch_size=256,
                        epochs=40,
                        validation_data=(X_test, Y_test_oh))
    # 保存模型
    model.save(r'.\model\\' + path + '\\' + str(signal_len) + 's-train_' +
               str(k + 1) + '-fold.h5py')
    # 预测
    prob_trainY = model.predict(X_train)
    prob_testY = model.predict(X_test)

    pred_trainY = np.argmax(prob_trainY, axis=1)
    pred_testY = np.argmax(prob_testY, axis=1)

    # 评价指标
    Se_tr, Sp_tr, Ber_tr = calc_ber(Y_train, pred_trainY)
    Se_te, Sp_te, Ber_te = calc_ber(Y_test, pred_testY)

    Auc_tr = calc_auc(Y_train, np.argmax(prob_trainY, axis=1), 1)
    Auc_te = calc_auc(Y_test, np.argmax(prob_testY, axis=1), 1)

    # 绘制代价函数曲线
    train_loss = history.history['loss']
    test_loss = history.history['val_loss']

    train_auc = history.history['auc']
    test_auc = history.history['val_auc']

    # 保存重要数据
    important_data = {
        'train_loss': train_loss,
Beispiel #3
0
                       name='final_output',
                       use_bias='False')(tensor)
    model = Model(inputs=input0, outputs=prediction)
    # 加载训练好的模型权重
    model.load_weights('.\model\\' + path + '\\' + str(signal_len) +
                       's-train_' + str(k + 1) + '-fold.h5py')
    # 预测
    prob_testY = model.predict(X_test)
    # 加载重要参数
    data_path = r'.\important_data\\' + path + '\\' + str(
        signal_len) + 's-train_' + str(k + 1) + '-fold.pickle'
    with open(data_path, 'rb') as f:
        parameter = pickle.load(f)
        thr = parameter['threshold']
    # 概率转换成0-1标签
    pred_testY = (prob_testY >= thr).astype('int8')
    pred_testY = pred_testY.reshape(-1)
    Ber.append(calc_ber(Y_test, pred_testY)[2])
    # 找出错误样本的索引
    error_index = np.argwhere((pred_testY - Y_test) != 0).reshape(-1)
    Error.append(error_index)
    print(k + 1)
print('%.2f' % np.mean(Ber))
error = np.hstack([Error[0], Error[1], Error[2], Error[3], Error[4]])
for i in annotation:
    one = np.argwhere(original_label == i).reshape(-1)  # 423 AF index
    # 错误样本索引与当前心律的索引的交集
    c = list(set(error).intersection(set(one)))
    acc = (len(one) - len(c)) / len(one)
    print('%.2f' % acc)