Beispiel #1
0
    def __init__(self, master):

        os.chdir(
            'D:/Confidential/Projects/Steel/LD2 BDS/prelim_analysis/data/constructed data/'
        )
        temp = pd.read_csv('data_dump_24_3_17.csv')
        print(temp.shape)
        temp = temp.dropna()
        print(temp.shape)

        X_all_left = pd.DataFrame(temp.iloc[:, 0:20])
        X_all_trigger = pd.DataFrame(temp.iloc[:, 20:40])
        X_all_right = pd.DataFrame(temp.iloc[:, 40:60])
        Y_all_clean = temp.iloc[:, 60]
        index_file_clean = temp.iloc[:, 61]

        X_all_trigger.columns = [
            "X1", "X2", "X3", "X4", "X5", "X6", "X7", "X8", "X9", "X10", "X11",
            "X12", "X13", "X14", "X15", "X16", "X17", "X18", "X19", "X20"
        ]
        X_all_left.columns = [
            "X1", "X2", "X3", "X4", "X5", "X6", "X7", "X8", "X9", "X10", "X11",
            "X12", "X13", "X14", "X15", "X16", "X17", "X18", "X19", "X20"
        ]
        X_all_right.columns = [
            "X1", "X2", "X3", "X4", "X5", "X6", "X7", "X8", "X9", "X10", "X11",
            "X12", "X13", "X14", "X15", "X16", "X17", "X18", "X19", "X20"
        ]

        print(X_all_trigger.shape, ' : Size of all X trigger')
        print(X_all_left.shape, ' : Size of all X left')
        print(X_all_right.shape, ' : Size of all X right')
        print(Y_all_clean.shape, ' : Size of all Y')
        print(index_file_clean.shape, ' : Shape of index file')

        temp = X_all_trigger.apply(include_tree, axis=1)

        data_logit = pd.concat([X_all_trigger, temp], axis=1)

        print(X_all_trigger.shape)
        print(data_logit.shape)

        global woe_table
        woe_table = mf.calc_WOE(data_logit.iloc[:, -1], Y_all_clean)

        temp2 = data_logit.apply(subs_WOE, axis=1)

        # just to make sure everything is going okay
        temp3 = pd.concat([temp2, data_logit.iloc[:, -1]], axis=1)

        data_logit = pd.concat([X_all_trigger, temp2], axis=1)

        write_data = pd.concat([data_logit, Y_all_clean], axis=1)
        print(write_data.shape)
        write_data.to_csv('logit_data_6_4.csv', index=False)

        clf_logit_trigger = LogisticRegression()
        clf_logit_trigger = clf_logit_trigger.fit(data_logit, Y_all_clean)
        beta_0 = clf_logit_trigger.intercept_
        global beta
        beta = clf_logit_trigger.coef_[0].tolist()
        beta_0_back = clf_logit_trigger.intercept_
        global beta_back
        beta_back = clf_logit_trigger.coef_[0].tolist()

        print('Initial Values')
        print(beta_0, beta)

        file_name = "D:/Confidential/Projects/Steel/LD2 BDS/prelim_analysis/data/breakout files/d5122018.csv"
        title_name = file_name.split('/')[-1]
        file = pd.read_csv(file_name)
        file = file.iloc[2500:3000, :].reset_index()

        TC_layer = 12
        tt1 = 'TC' + str(TC_layer)
        tt2 = 'TC' + str(TC_layer + 20)
        tt3 = 'TC' + str(TC_layer + 40)

        L1 = file.loc[:, tt1]
        L2 = file.loc[:, tt2]
        L3 = file.loc[:, tt3]
        ML = file.loc[:, 'M.level']
        CS = file.loc[:, 'C.speed']
        CP = file.loc[:, 'C.percent']
        MW = file.loc[:, 'M.width']

        TC_layer_left = mf.find_left(MW[0], TC_layer)

        tt1 = 'TC' + str(TC_layer_left)
        tt2 = 'TC' + str(TC_layer_left + 20)

        LL1 = file.loc[:, tt1]
        LL2 = file.loc[:, tt2]

        TC_layer_right = mf.find_right(MW[0], TC_layer)

        tt1 = 'TC' + str(TC_layer_right)
        tt2 = 'TC' + str(TC_layer_right + 20)

        LR1 = file.loc[:, tt1]
        LR2 = file.loc[:, tt2]

        TC_layer_opp = mf.find_opposite(TC_layer)

        tt1 = 'TC' + str(TC_layer_opp)
        tt2 = 'TC' + str(TC_layer_opp + 20)
        tt3 = 'TC' + str(TC_layer_opp + 40)
        LO1 = file.loc[:, tt1]
        LO2 = file.loc[:, tt2]
        LO3 = file.loc[:, tt3]

        # making the continuous x's
        temp_x_trigger = mf.make_cont_x(L1, L2, ML, CP, CS, LO1, LO2, MW)
        # including the tree based information
        temp = temp_x_trigger.apply(include_tree, axis=1)
        temp_data = pd.concat([temp_x_trigger, temp], axis=1)
        temp2 = temp_data.apply(subs_WOE, axis=1)
        temp_x_trigger = pd.concat([temp_x_trigger, temp2], axis=1)
        logit_trigger = pd.DataFrame(
            clf_logit_trigger.predict_proba(temp_x_trigger))
        logit_trigger = list(logit_trigger.iloc[:, -1])
        b = list(np.zeros(60))
        b.extend(logit_trigger)
        b = pd.DataFrame(b)
        # Create a container
        frame = tkinter.Frame(master)

        var = tkinter.StringVar(frame)
        var.set("Which feature do you want")  # initial value
        choices = [
            '1 : slope_n(l2,3)', '2 : slope_n(l2,5)',
            '3 : sign_present(l1,l2,2)', '4 : sign_present(l1,l2,5)',
            '5 : sign_present(l1,l2,7)', '6 : last_nm(l1,5,32)',
            '7 : last_nm(l2,5,32)', '8 : np.mean(cp)',
            '9 : np.std(l1.iloc[-12:])', '10 : np.std(ml.iloc[-12:])',
            '11 : find_l1_peak_slope(l1,lo1,cs)',
            '12 : find_l1_peak_ratio(l1,lo1,cs)', '13 : find_drop(l1)',
            '14 : find_drop(l2)', '15 : cs_change(cs)', '16 : get_kinks(l2)',
            '17 : first_derivative(l2)', '18 : second_derivative(l2)',
            '19 : bin_crossover(l1,l2)', '20 : peak_diff(l1,l2)'
        ]
        option = tkinter.OptionMenu(frame, var, *choices)
        option.pack(side=tkinter.LEFT)

        slider = tkinter.Scale(frame,
                               from_=-10,
                               to=10,
                               resolution=0.01,
                               orient=tkinter.HORIZONTAL,
                               length=750)
        slider.pack(side=tkinter.LEFT)

        self.button_select = tkinter.Button(
            frame,
            text="Select the value ?",
            command=lambda: self.select(var.get(), slider.get(), beta_0, beta,
                                        temp_x_trigger, choices))
        self.button_select.pack(side=tkinter.LEFT)

        self.button_reset = tkinter.Button(
            frame,
            text="Reset",
            command=lambda: self.reset_func(clf_logit_trigger, beta_0,
                                            temp_x_trigger)).pack(
                                                side=tkinter.LEFT)
        self.button_print_beta_all = tkinter.Button(
            frame, text="Print All Beta",
            command=self.print_beta_all).pack(side=tkinter.LEFT)
        self.button_print_beta_selected = tkinter.Button(
            frame,
            text="Print Selected Beta",
            command=lambda: self.print_beta_selected(choices, var.get())).pack(
                side=tkinter.LEFT)

        ##        self.textBox = tkinter.Text(frame,height=10, width = 25)
        ##        self.textBox.insert(tkinter.END,beta)
        ##        self.textBox.config(state=tkinter.DISABLED)
        ##        self.textBox.pack(side = tkinter.BOTTOM)

        fig = Figure()
        fig.suptitle(title_name)
        ax = fig.add_subplot(311)
        ax.set_ylim(0, 1)
        self.line, = ax.plot(range(len(b)), b)
        ax.grid(b=True, which='both')

        ax2 = fig.add_subplot(312)
        ax2.plot(range(len(L1)), L1, range(len(L2)), L2)
        ax2.legend(["L1", "L2"])
        ax2.grid(b=True, which='both')

        ax3 = fig.add_subplot(313)
        ax3.plot(range(len(ML)), ML, range(len(CS)), 100 * CS)
        ax3.legend(["Mold Level", "100x Casting Speed"])
        ax3.grid(b=True, which='both')

        self.canvas = FigureCanvasTkAgg(fig, master=master)
        self.canvas.show()
        self.canvas.get_tk_widget().pack(side='top', fill='both', expand=1)
        frame.pack()
Beispiel #2
0
    count = count + 1
    print(count,"/",ttt)
    file = pd.read_csv(file_name)
    if file.loc[0,'layer'] == 2 :
        TC_layer = int(np.mean(file.loc[:,'TC_layer']))
        tt1 = 'TC' + str(TC_layer)
        tt2 = 'TC' + str(TC_layer + 20)

        L1 = file.loc[:,tt1]
        L2 = file.loc[:,tt2]
        ML = file.loc[:,'M.level']
        CS = file.loc[:,'C.speed']
        CP = file.loc[:,'C.percent']
        MW = file.loc[:,'M.width']

        TC_layer_left = mf.find_left(TC_layer,file)

        tt1 = 'TC' + str(TC_layer_left)
        tt2 = 'TC' + str(TC_layer_left + 20)

        LL1 = file.loc[:,tt1]
        LL2 = file.loc[:,tt2]

        TC_layer_right = mf.find_right(TC_layer,file)

        tt1 = 'TC' + str(TC_layer_right)
        tt2 = 'TC' + str(TC_layer_right + 20)

        LR1 = file.loc[:,tt1]
        LR2 = file.loc[:,tt2]
Beispiel #3
0
    count = count + 1
    print(count, "/", ttt, file_name)
    file = pd.read_csv(file_name)
    if file.loc[0, 'layer'] == 2:
        TC_layer = int(np.mean(file.loc[:, 'TC_layer']))
        tt1 = 'TC' + str(TC_layer)
        tt2 = 'TC' + str(TC_layer + 20)

        L1 = file.loc[:, tt1]
        L2 = file.loc[:, tt2]
        ML = file.loc[:, 'M.level']
        CS = file.loc[:, 'C.speed']
        CP = file.loc[:, 'C.percent']
        MW = file.loc[:, 'M.width']

        TC_layer_left = mf.find_left(MW[0], TC_layer)

        tt1 = 'TC' + str(TC_layer_left)
        tt2 = 'TC' + str(TC_layer_left + 20)

        LL1 = file.loc[:, tt1]
        LL2 = file.loc[:, tt2]

        TC_layer_right = mf.find_right(MW[0], TC_layer)

        tt1 = 'TC' + str(TC_layer_right)
        tt2 = 'TC' + str(TC_layer_right + 20)

        LR1 = file.loc[:, tt1]
        LR2 = file.loc[:, tt2]