def hot_potato(namelist, num):
    circle = MyQueue()
    for name in namelist:
        circle.add(name)
    while len(circle) != 1:
        for i in range(num):
            circle.add(circle.pop())
        circle.pop()
    return circle.pop()
Beispiel #2
0
    def setUp(self):
        # Provide empty queue
        self.queue = MyQueue()

        # Provide filled queue
        self.len_test_data = 5
        self.test_data = [i + 1 for i in range(self.len_test_data)]
        self.filled_queue = MyQueue()
        for i in self.test_data:
            self.filled_queue.push(i)
Beispiel #3
0
class TestMethods(unittest.TestCase):
    def setUp(self) -> None:
        self.test_stack = Stack()
        self.test_queue = MyQueue()
        self.test_array = []

    def test_stack(self):
        # проверяю, что создаётся пустым
        self.assertTrue(self.test_stack.empty())

        # добавляю 100 элементов - после каждого добавления проверяю empty
        # - должен возвращать false - т.к. элементы добавляются
        for x in range(100):
            self.test_stack.push(x)
            self.assertFalse(self.test_stack.empty())

        # переопределил __eq__ в Node для сравнения только значений
        # извлекаю 99 значений, создавая для каждого Node с ожидаемым значением и сравниваю их
        for x in range(99, 0, -1):
            equals_node = Node(x)
            self.assertEqual(self.test_stack.pop(), equals_node)

        # проверяю, что стек не пустой. Затем достаю последний Node и проверяю ещё раз
        self.assertFalse(self.test_stack.empty())
        self.test_stack.pop()
        self.assertTrue(self.test_stack.empty())

        # проверяю, что пустой стэк при попытки достать элемент - возвращает None
        self.assertIsNone(self.test_stack.pop())

    def test_my_queue(self):
        # делаю такие же проверки, как для стека

        # проверяю, что создаётся пустым
        self.assertTrue(self.test_queue.empty())

        # добавляю 100 элементов - после каждого добавления проверяю empty
        # - должен возвращать false - т.к. элементы добавляются
        for x in range(100):
            self.test_queue.enqueue(x)
            self.assertFalse(self.test_queue.empty())

        # извлекаю 99 значений, создавая для каждого Node с ожидаемым значением и сравниваю их
        for x in range(99):
            equals_node = Node(x)
            self.assertEqual(self.test_queue.dequeue(), equals_node)

        # проверяю, что стек не пустой. Затем достаю последний Node и проверяю ещё раз
        self.assertFalse(self.test_queue.empty())
        self.test_queue.dequeue()
        self.assertTrue(self.test_queue.empty())

        # проверяю, что пустой стэк при попытки достать элемент - возвращает None
        self.assertIsNone(self.test_queue.dequeue())
Beispiel #4
0
class TestMyQueue(unittest.TestCase):
    def setUp(self):
        # Provide empty queue
        self.queue = MyQueue()

        # Provide filled queue
        self.len_test_data = 5
        self.test_data = [i + 1 for i in range(self.len_test_data)]
        self.filled_queue = MyQueue()
        for i in self.test_data:
            self.filled_queue.push(i)

    def test_instantiation(self):
        queue = MyQueue()
        self.assertIsNotNone(queue)
        self.assertIsNone(queue.latest.top)
        self.assertIsNone(queue.oldest.top)

    def test_len(self):
        # Push and pop repeatedly, still one stack should always be empty
        self.assertEqual(0, len(self.queue))
        self.assertEqual(0, len(self.queue.latest))
        self.assertEqual(0, len(self.queue.oldest))

        self.queue.push(1)
        self.queue.push(1)
        self.assertEqual(2, len(self.queue))
        self.assertEqual(2, len(self.queue.latest))
        self.assertEqual(0, len(self.queue.oldest))

        self.queue.pop()
        self.assertEqual(1, len(self.queue))
        self.assertEqual(0, len(self.queue.latest))
        self.assertEqual(1, len(self.queue.oldest))

    def test_push(self):
        for i in self.test_data:
            self.queue.push(i)
            self.assertEqual(i, len(self.queue))
            self.assertEqual(i, len(self.queue.latest))
            self.assertEqual(0, len(self.queue.oldest))
            self.assertEqual(i, self.queue.latest.top.key)

    def test_pop(self):
        for i in self.test_data:
            data = self.filled_queue.pop()
            self.assertEqual(data, i)
            self.assertEqual(self.len_test_data - i, len(self.filled_queue))
            self.assertEqual(0, len(self.filled_queue.latest))
            self.assertEqual(self.len_test_data - i,
                             len(self.filled_queue.oldest))
            if (i < self.len_test_data):
                self.assertEqual(i + 1, self.filled_queue.oldest.top.key)
Beispiel #5
0
    def list_of_depths(self):
        """
        Create a linked list of all the nodes at each depth.
        For example, a tree with depth D has D linked lists.
        """
        queue = MyQueue()
        the_dict = defaultdict(list)
        level = 0

        queue.push((self, level))
        while (queue.is_empty() == False):
            node, level = queue.pop()
            the_dict[level].append(node.key)
            if (node.left != None):
                queue.push((node.left, level + 1))
            if (node.right != None):
                queue.push((node.right, level + 1))

        return the_dict
def simulation(total_seconds, pages_per_pages):
    """ 模拟运行环境 """
    printer = Printer(pages_per_pages)
    printer_queue = MyQueue()
    time_per_task = []
    for current_second in range(total_seconds):
        if new_task():
            printer_queue.add(Task(current_second))
        if (len(printer_queue) != 0) and (not printer.isBusy()):
            current_task = printer_queue.pop()
            printer.startTask(current_task)
            time_per_task.append(current_task.waitTime(current_second))
        printer.tick()
    avg_time_per_task = sum(time_per_task) / len(time_per_task)
    print(
        'Average time {:6.2f} secs, total {} tasks, {} tasks remaining'.format(
            avg_time_per_task,
            len(time_per_task),
            len(printer_queue),
        ))
Beispiel #7
0
def bfs(start):
    # start.distance = 0
    # start.previous = None
    vertex_queue = MyQueue()
    vertex_queue.enqueue(start)
    while vertex_queue.size() > 0:
        current = vertex_queue.dequeue()
        for nbr in current.connections:
            if nbr.state == 'unprocessed':
                nbr.state = 'processing'
                nbr.distance = current.distance + 1
                nbr.previous = current
                vertex_queue.enqueue(nbr)
        current.state = 'processed'
Beispiel #8
0
    def __init__(self,
                 sizes=list(),
                 learning_rate=1.0,
                 mini_batch_size=16,
                 number_of_batches=16,
                 epochs=10,
                 matmul=np.matmul):
        super().__init__(sizes, learning_rate, mini_batch_size,
                         number_of_batches, epochs, matmul)

        self.workers = []
        self.jobs = mp.Queue()  # Queue of tuples (image, label)
        self.results = ResultQueue()  # Queue of tuples (image, label)
Beispiel #9
0
    def fit(self, training_data, validation_data=None):
        '''
        Override this function to create and destroy workers
        '''

        self._jobs_queue = mp.Queue()
        self._res_queue = MyQueue()
        n_cpus = mp.cpu_count()
        self._processes = [
            Worker(self._jobs_queue, self._res_queue) for i in range(n_cpus)
        ]
        for p in self._processes:
            p.start()

        try:
            super().fit(training_data, validation_data)
        except:
            for p in self._processes:
                p.terminate()
            raise

        for p in self._processes:
            p.terminate()
Beispiel #10
0
    def breadth_first_search(graph, start_node, destination_node):
        """
        BFS. Make use of a queue, and make sure to mark nodes as
        visited!
        TODO: Return the path and its cost.
        """
        graph.reset_visited()

        q = MyQueue()
        start_node.visited = True
        q.push(start_node)

        while (q.is_empty() == False):
            node = q.pop()
            if (node == destination_node):
                return True
            for adjacent in node.adjacents:
                q.push(adjacent)

        return False
Beispiel #11
0
class IPNeuralNetwork(NeuralNetwork):
    def fit(self, training_data, validation_data=None):
        '''
        Override this function to create and destroy workers
        '''

        self._jobs_queue = mp.Queue()
        self._res_queue = MyQueue()
        n_cpus = mp.cpu_count()
        self._processes = [
            Worker(self._jobs_queue, self._res_queue) for i in range(n_cpus)
        ]
        for p in self._processes:
            p.start()

        try:
            super().fit(training_data, validation_data)
        except:
            for p in self._processes:
                p.terminate()
            raise

        for p in self._processes:
            p.terminate()

    def create_batches(self, data, labels, batch_size):
        '''
        Override this function to return batches created by workers
        '''
        n_samples = len(data)

        for d, l in zip(data, labels):
            self._jobs_queue.put((d, l))

        result = []

        while len(result) != n_samples:
            result.append(self._res_queue.get())

        data = np.asarray([r[0] for r in result])
        labels = np.asarray([r[1] for r in result])

        return super().create_batches(data, labels, batch_size)
def bfs(graph, start):
    """ breadth first search """
    q = MyQueue()
    visited_id = set()  # avoid visit repeated
    v = graph.get_vertex(start)
    if v:
        visited_id.add(v.id)  # add start vertex
        # add v.nbr in queue
        for i in v.get_connections():
            q.add(i)
            visited_id.add(i.id)
    else:
        raise ValueError('Error! start vertex {start} is not in Graph.')
    while q:  # bfs traverse
        current_vert = q.pop()
        print(current_vert.id)  # print vertex id by bfs

        for i in current_vert.get_connections():
            if i.id not in visited_id:
                q.add(i)
                visited_id.add(i.id)
Beispiel #13
0
def simulation(seconds, print_speed):
    printer = Printer(print_speed)
    print_queue = MyQueue()
    wait_time_list = []

    for current_second in range(seconds):
        if Task.new_task():
            task = Task(current_second)
            print_queue.enqueue(task)
        if (not printer.busy()) and (not print_queue.is_empty()):
            new_task = print_queue.dequeue()
            wait_time_list.append(new_task.wait_time(current_second))
            printer.start_next(new_task)
        printer.tick()
    average_wait_time = sum(wait_time_list) / len(wait_time_list)
    print(
        f'Average wait {average_wait_time:6.2f}, {print_queue.size():3d} tasks remaining'
    )
Beispiel #14
0
class IPNeuralNetwork(NeuralNetwork):
    def __init__(self,
                 sizes=list(),
                 learning_rate=1.0,
                 mini_batch_size=16,
                 number_of_batches=16,
                 epochs=10,
                 matmul=np.matmul):
        super().__init__(sizes, learning_rate, mini_batch_size,
                         number_of_batches, epochs, matmul)

        self.workers = []
        self.jobs = mp.Queue()  # Queue of tuples (image, label)
        self.results = ResultQueue()  # Queue of tuples (image, label)

    def _n_cpus(self):
        if platform.system() == 'Windows':
            return mp.cpu_count(
            )  # Good for tests, but gets wrong number on CDP servers
        m = re.search(r'(?m)^Cpus_allowed:\s*(.*)$',
                      open('/proc/self/status').read())
        num_cpu = bin(int(m.group(1).replace(',', ''), 16)).count('1')
        return num_cpu

    def fit(self, training_data, validation_data=None):
        '''
        Override this function to create and destroy workers
        '''
        #Create Workers and set jobs
        n_workers = self._n_cpus()

        data = training_data[0]
        labels = training_data[1]
        jobs_worker = SetJobsWorker(
            n_workers,
            data,
            labels,
            self.jobs,
            n_jobs=(self.number_of_batches * self.mini_batch_size *
                    self.epochs))
        jobs_worker.start()

        for _ in range(n_workers):
            worker = Worker(self.jobs, self.results)
            worker.start()
            self.workers.append(worker)

        #Call the parent's fit
        super().fit(training_data, validation_data)

        #Stop Workers
        for worker in self.workers:
            worker.join()
        self.workers = []
        jobs_worker.join()

    def create_batches(self, data, labels, batch_size):
        """
         Parameters
         ----------
         data : np.array of input data
         labels : np.array of input labels
         batch_size : int size of batch
    
         Returns
         -------
         list
             list of tuples of (data batch of batch_size, labels batch of batch_size)

        """
        batches_flat = [
        ]  # all augmented data in one list, without splitting into batches
        for k in range(self.number_of_batches * self.mini_batch_size):
            # Stop condition for results queue:
            #  we know that number of results is the same as number of jobs
            #  so here we don't use None-terminated queue like with jobs
            batches_flat.append(self.results.get())

        batches = []
        sz = self.mini_batch_size
        for i in range(self.number_of_batches):
            batch = batches_flat[i * sz:(i + 1) *
                                 sz]  # list of tuples (image, label)
            batches.append(
                (np.array([tup[0] for tup in batch]),
                 np.array([tup[1] for tup in batch]))
            )  # tuple of (data batch of batch_size, labels batch of batch_size)
        return batches
Beispiel #15
0
 def setUp(self) -> None:
     self.test_stack = Stack()
     self.test_queue = MyQueue()
     self.test_array = []
Beispiel #16
0
 def test_instantiation(self):
     queue = MyQueue()
     self.assertIsNotNone(queue)
     self.assertIsNone(queue.latest.top)
     self.assertIsNone(queue.oldest.top)
Beispiel #17
0
from led import MyPiLed
from my_queue import MyQueue
import os

try:
    yellow = MyPiLed(4)
    red = MyPiLed(17)

    q = MyQueue()

    count = 0
    led_choice = 0

    os.system("clear")

    print("Which LED do you want to flash?")
    print("1: Yellow?")
    print("2: Red?")

    led_choice = input("Choose your option: ")

    os.system("clear")
    if led_choice == '1':
        print("You picked the Yellow LED")
        count = input("How many times do you want to blink?: ")
        yellow.blink(int(count), 0.5)
    if led_choice == '2':
        print("You picked the Red LED")
        count = input("How many times do you want to blink?: ")
        red.blink(int(count), 0.5)
except:
from my_queue import MyQueue
from led import MyPiLed


try:
  # Running code
  led1 = MyPiLed(MyPiLed.YELLOW)
  led2 = MyPiLed(MyPiLed.RED)

  q = MyQueue()
  q.put([led1, 50, 0.1])
  q.put([led2, 10, 0.5])

  q.join()

  q.clear()

except KeyboardInterrupt:
  q.clear()
  led1.off()
  led2.off()
  MyPiLed.reset()
Beispiel #19
0
from my_queue import MyQueue
from user_interface import *

queues = {"a": MyQueue(), "b": MyQueue(), "c": MyQueue()}

VERY_PRIVATE_PASS = "******"

if __name__ == "__main__":
    while True:
        welcome()
        choice = choose()

        if choice in queues.keys():
            q = queues[choice]
            place = q.add_element()
            number_info(choice, place)
        elif choice == VERY_PRIVATE_PASS:
            official_welcome()
            officials_choice = choose()
            q = queues[officials_choice]
            place = q.remove_element()
            you_are_handling(officials_choice, place)
        else:
            queue_not_found()
Beispiel #20
0
from my_queue import MyQueue

k1 = MyQueue(4)

k1.add(3)
k1.add(3123)
k1.add(3)
k1.add(123)
k1.add(4)
k1.add(0)
k1.add(2)
k1.add(1)
print(k1.size())

k1.remove()
k1.remove()
k1.remove()
k1.remove()
k1.remove()
k1.remove()
Beispiel #21
0
def hot_potato(name_list, times):
    name_queue = MyQueue()
    for name in name_list:
        name_queue.enqueue(name)
    while name_queue.size() > 1:
        for i in range(times):
            name_queue.enqueue(name_queue.dequeue())
        name_queue.dequeue()
    return name_queue.dequeue()
from my_queue import MyQueue
from led import MyPiLed

try:
    # Running code
    led1 = MyPiLed(MyPiLed.YELLOW)
    led2 = MyPiLed(MyPiLed.RED)

    q = MyQueue()
    q.put([led1, 50, 0.1])
    q.put([led2, 10, 0.5])

    q.join()

    q.clear()

except KeyboardInterrupt:
    q.clear()
    led1.off()
    led2.off()
    MyPiLed.reset()