def __init__(self, layers: [base_layer.AbstractLayer]): """ :parameter layers: a list of tuple for init layers """ self.layers = layers self.weighted_layers = self.get_weighted_layers() self.rng = np.random.RandomState(1234) self.depth = len(self.weighted_layers) # set pickle file path self.file_name = os.path.splitext(os.path.basename(sys.argv[0]))[0] self.pickle_file = conf.DATA_PATH + self.file_name + '.pkl' self.connect() # self.reset_params() self.init_weights_baises() self.weights, self.biases = self._get_weights_biases() # l1 and l2 regularization self.l1, self.l2 = self.init_regularization() # init my_theano functions self.x = T.matrix('x') self.y = T.ivector('y') self.index = T.iscalar('index') self.train_model = None self.valid_model = None self.test_model = None # set early stopping patience self.patience = 20 self.patience_inc_coef = -0.1 self.lest_valid_error = np.inf
def __init__(self, layers, ceptron): """ :parameter layers: a list of layers, by the type of base_layer """ assert type(layers) == list self.layers = layers self.weights = self.init_weights() self.biases = self.init_biases() self.ceptron = ceptron self.depth = len(layers) - 1 # init my_theano functions self.x = T.matrix('x') self.y = T.ivector('y') self.index = T.iscalar('index') self.p_y = self.forward(self.x) self.train_model = None # self.set_weights_biases = my_theano.function(self._make_updates(self.weights, self.biases)) # set early stopping patience self.patience = 5 self.patience_inc_coef = -0.1 self.lest_valid_error = np.inf # set pickle file path self.file_name = os.path.splitext(os.path.basename(sys.argv[0]))[0] self.pickle_file = conf.DATA_PATH + self.file_name + '.pkl'
def __init__(self, layers: [base_layer.AbstractLayer]): """ :parameter layers: a list of tuple for init layers """ self.layers = layers self.rng = np.random.RandomState(1234) self.depth = len(self.layers) - 1 self.weights = self.init_weights() self.biases = self.init_biases() # l1 and l2 regularization self.l1, self.l2 = self.init_regularization() # init my_theano functions self.x = T.matrix('x') self.y = T.ivector('y') self.index = T.iscalar('index') self.p_y = self.forward(self.x) self.train_model = None self.valid_model = None self.test_model = None # self.set_weights_biases = my_theano.function(self._make_updates(self.weights, self.biases)) # set early stopping patience self.patience = 20 self.patience_inc_coef = -0.1 self.lest_valid_error = np.inf # set pickle file path self.file_name = os.path.splitext(os.path.basename(sys.argv[0]))[0] self.pickle_file = conf.DATA_PATH + self.file_name + '.pkl'