Beispiel #1
0
config.display()

# Training dataset
dataset_train = ShapesDataset()
dataset_train.load_shapes(1000, config.IMAGE_SHAPE[0], config.IMAGE_SHAPE[1])
dataset_train.prepare()

# Validation dataset
dataset_val = ShapesDataset()
dataset_val.load_shapes(100, config.IMAGE_SHAPE[0], config.IMAGE_SHAPE[1])
dataset_val.prepare()

image, gt_class_ids, gt_boxes, gt_masks = mutils.load_image_gt(
    dataset_train,
    config,
    image_id=440,
    augment=None,
    augmentation=None,
    use_mini_mask=config.USE_MINI_MASK)
# config.BATCH_SIZE = 1

model = modellib.MaskYOLO(mode="training",
                          config=config,
                          yolo_pretrain_dir=None,
                          yolo_trainable=True)
model.load_weights('./saved_model_Dec27-14-43.h5')

# model.detect(image, './saved_model_Dec27-14-43.h5')
model.train(dataset_train,
            dataset_val,
            learning_rate=config.LEARNING_RATE,
Beispiel #2
0
dataset_val = RiceDataset()
dataset_val.load_rice(RICE_DIR, "val")
dataset_val.prepare()

# all_info = []
# for id in range(0, 500):
#     image, gt_class_ids, gt_boxes, gt_masks = \
#         mutils.load_image_gt(dataset_train, config, id,
#                       use_mini_mask=config.USE_MINI_MASK)
#     all_info.append([image, gt_class_ids, gt_boxes, gt_masks])

# Data generators
train_info = []
for id in range(0, 53):
    image, gt_class_ids, gt_boxes, gt_masks = \
        mutils.load_image_gt(dataset_train, config, id,
                             use_mini_mask=config.USE_MINI_MASK)
    train_info.append([image, gt_class_ids, gt_boxes, gt_masks])

val_info = []
for id in range(0, 6):
    image, gt_class_ids, gt_boxes, gt_masks = \
        mutils.load_image_gt(dataset_val, config, id,
                             use_mini_mask=config.USE_MINI_MASK)
    val_info.append([image, gt_class_ids, gt_boxes, gt_masks])

train_generator = mutils.BatchGenerator(train_info,
                                        config,
                                        mode='training',
                                        shuffle=True,
                                        jitter=False,
                                        norm=True)
Beispiel #3
0
inference_config.BATCH_SIZE = 1
inference_config.display()
''' Recreate the model in inference mode '''
model = modellib.MaskYOLO(mode="inference", config=inference_config)
''' Load trained weights '''
model.load_weights('./model_1216.h5', by_name=True)
''' Training dataset '''
dataset_train = ShapesDataset()
dataset_train.load_shapes(500, inference_config.IMAGE_SHAPE[0],
                          inference_config.IMAGE_SHAPE[1])
dataset_train.prepare()
''' Validation dataset '''
dataset_val = ShapesDataset()
dataset_val.load_shapes(50, inference_config.IMAGE_SHAPE[0],
                        inference_config.IMAGE_SHAPE[1])
dataset_val.prepare()
''' Test on a random image '''
image_id = random.choice(dataset_val.image_ids)
original_image, gt_class_id, gt_bbox, gt_mask = mutils.load_image_gt(
    dataset_val, inference_config, image_id, use_mini_mask=False)

# visualize.display_instances(original_image, gt_bbox, gt_mask, gt_class_id,
#                             dataset_train.class_names, figsize=(8, 8))

results = model.detect_for_one([original_image], verbose=1)

r = results[0]
print(r)
# visualize.display_instances(original_image, r['rois'], r['masks'], r['class_ids'],
#                             dataset_val.class_names, r['scores'], ax=get_ax())