Beispiel #1
0
def test__infer_on_cut(dummy_data_training):

    momenta, cut_mom, near_mom, labels, cut_labs, near_labs, delta_cut, delta_near = dummy_data_training

    fks = FKSPartition(momenta=momenta, labels=labels, all_legs=False)

    cut_momenta, near_momenta, cut_labels, near_labels = fks.cut_near_split(
        delta_cut, delta_near)

    n_gluon = 1

    NN = Model((n_gluon + 2 - 1) * 4,
               cut_momenta,
               cut_labels,
               all_jets=False,
               all_legs=False)
    _, _, _, _, _, _, _, _ = NN.process_training_data()

    model_cut, x_mean_cut, x_std_cut, y_mean_cut, y_std_cut = train_cut_network(
        cut_momenta=cut_momenta,
        NJ_cut=cut_labels,
        order='LO',
        n_gluon=1,
        delta_cut=delta_cut,
        points=len(cut_momenta) * 2,
        model_dir='',
        epochs=1)

    y_pred_cuts = infer_on_cut(NN=NN,
                               moms=cut_momenta,
                               model=model_cut,
                               x_mean_cut=x_mean_cut,
                               x_std_cut=x_std_cut,
                               y_mean_cut=y_mean_cut,
                               y_std_cut=y_std_cut)
Beispiel #2
0
def test__train_near_networks_general_high_precision(
        dummy_data_all_legs_training):

    momenta, cut_mom, near_mom, labels, cut_labs, near_labs, delta_cut, delta_near = dummy_data_all_legs_training

    nlegs = len(momenta[0]) - 2

    fks = FKSPartition(momenta=momenta, labels=labels, all_legs=True)

    cut_momenta, near_momenta, cut_labels, near_labels = fks.cut_near_split(
        delta_cut, delta_near)
    pairs, labs_split = fks.weighting()

    model_near, x_mean_near, x_std_near, y_mean_near, y_std_near = train_near_networks_general(
        input_size=(nlegs + 2) * 4,
        pairs=pairs,
        near_momenta=near_momenta,
        NJ_split=labs_split,
        delta_near=delta_near,
        model_dir='',
        all_jets=True,
        all_legs=True,
        model_dataset=False,
        epochs=1,
        high_precision=True)
Beispiel #3
0
    def recut_data(self, momenta, nj):

        fks = FKSPartition(momenta=momenta, labels=nj, all_legs=self.all_legs)
        cut_momenta, near_momenta, cut_nj, near_nj = fks.cut_near_split(
            delta_cut=self.delta_cut, delta_near=0.02)
        momenta = np.concatenate((cut_momenta, near_momenta))
        nj = np.concatenate((cut_nj, near_nj))

        return momenta, nj
Beispiel #4
0
    def split_data(self, momenta, nj, return_weights=False):

        fks = FKSPartition(momenta=momenta, labels=nj, all_legs=self.all_legs)

        cut_momenta, near_momenta, cut_nj, near_nj = fks.cut_near_split(
            delta_cut=self.delta_cut, delta_near=self.delta_near)

        if return_weights:
            pairs, near_nj_split, weights = fks.weighting(
                return_weights=return_weights)
            return cut_momenta, near_momenta, cut_nj, near_nj, pairs, near_nj_split, weights
        else:
            pairs, near_nj_split = fks.weighting(return_weights=return_weights)
            return cut_momenta, near_momenta, cut_nj, near_nj, pairs, near_nj_split
Beispiel #5
0
def test__weighting_all_legs(dummy_data_all_legs):

    momenta_all_legs, cut_mom, near_mom_all_legs, labels, cut_label, near_label, delta_cut, delta_near = dummy_data_all_legs
    
    fks = FKSPartition(
           momenta = momenta_all_legs,
           labels = labels,
           all_legs = True
       )
    
    cut_momenta, near_momenta, cut_labels, near_labels = fks.cut_near_split(delta_cut, delta_near)
    pairs, labs_split = fks.weighting()

    assert len(pairs) == 9
    assert len(labs_split) == 9
    assert np.isclose(np.sum(labs_split),near_label)
Beispiel #6
0
def test__cut_near_split_all_legs(dummy_data_all_legs):

    momenta_all_legs, cut_mom, near_mom_all_legs, labels, cut_label, near_label, delta_cut, delta_near = dummy_data_all_legs
    
    fks = FKSPartition(
        momenta = momenta_all_legs,
        labels = labels,
        all_legs = True
    )

    cut_momenta, near_momenta, cut_labels, near_labels = fks.cut_near_split(delta_cut, delta_near)

    assert check_list(cut_momenta[0][2],cut_mom[0][2])
    assert check_list(near_momenta[0][2], near_mom_all_legs[0][2])
    assert cut_labels[0] == cut_label
    assert near_labels[0] == near_label
Beispiel #7
0
def test__train_cut_network(dummy_data_training):

    momenta, cut_mom, near_mom, labels, cut_labs, near_labs, delta_cut, delta_near = dummy_data_training

    fks = FKSPartition(momenta=momenta, labels=labels, all_legs=False)

    cut_momenta, near_momenta, cut_labels, near_labels = fks.cut_near_split(
        delta_cut, delta_near)

    model_cut, x_mean_cut, x_std_cut, y_mean_cut, y_std_cut = train_cut_network(
        cut_momenta=cut_momenta,
        NJ_cut=cut_labels,
        order='LO',
        n_gluon=1,
        delta_cut=delta_cut,
        points=len(cut_momenta) * 2,
        model_dir='',
        epochs=1)
Beispiel #8
0
def create_model_all_legs_dataset(dummy_data_all_legs_training):

    momenta, cut_mom, near_mom, labels, cut_labs, near_labs, delta_cut, delta_near = dummy_data_all_legs_training

    nlegs = len(momenta[0]) - 2

    fks = FKSPartition(momenta=momenta, labels=labels, all_legs=True)

    cut_momenta, near_momenta, cut_labels, near_labels = fks.cut_near_split(
        delta_cut, delta_near)
    pairs, labs_split = fks.weighting()

    model = Model(input_size=(nlegs + 2) * 4,
                  momenta=cut_momenta,
                  labels=cut_labels,
                  all_jets=False,
                  all_legs=True,
                  model_dataset=True)

    return model
Beispiel #9
0
def test__train_near_networks(dummy_data_training):

    momenta, cut_mom, near_mom, labels, cut_labs, near_labs, delta_cut, delta_near = dummy_data_training

    fks = FKSPartition(momenta=momenta, labels=labels, all_legs=False)

    cut_momenta, near_momenta, cut_labels, near_labels = fks.cut_near_split(
        delta_cut, delta_near)
    pairs, labs_split = fks.weighting()

    model_near, x_mean_near, x_std_near, y_mean_near, y_std_near = train_near_networks(
        pairs=pairs,
        near_momenta=near_momenta,
        NJ_split=labs_split,
        order='LO',
        n_gluon=1,
        delta_near=delta_near,
        points=len(near_momenta) * 2,
        model_dir='',
        epochs=1)
Beispiel #10
0
def create_model_high_precision(dummy_data_training):

    momenta, cut_mom, near_mom, labels, cut_labs, near_labs, delta_cut, delta_near = dummy_data_training

    nlegs = len(momenta[0]) - 2
    n_gluon = 1

    fks = FKSPartition(momenta=momenta, labels=labels, all_legs=False)

    cut_momenta, near_momenta, cut_labels, near_labels = fks.cut_near_split(
        delta_cut, delta_near)
    pairs, labs_split = fks.weighting()

    model = Model(input_size=(n_gluon + 2 - 1) * 4,
                  momenta=cut_momenta,
                  labels=cut_labels,
                  all_jets=False,
                  all_legs=False,
                  high_precision=True)

    return model
Beispiel #11
0
def test__train_cut_network_general_dataset(dummy_data_all_legs_training):

    momenta, cut_mom, near_mom, labels, cut_labs, near_labs, delta_cut, delta_near = dummy_data_all_legs_training

    nlegs = len(momenta[0]) - 2

    fks = FKSPartition(momenta=momenta, labels=labels, all_legs=True)

    cut_momenta, near_momenta, cut_labels, near_labels = fks.cut_near_split(
        delta_cut, delta_near)

    model_cut, x_mean_cut, x_std_cut, y_mean_cut, y_std_cut = train_cut_network_general(
        input_size=(nlegs + 2) * 4,
        cut_momenta=cut_momenta,
        NJ_cut=cut_labels,
        delta_cut=delta_cut,
        model_dir='',
        all_jets=True,
        all_legs=True,
        model_dataset=True,
        epochs=1)
Beispiel #12
0
def test__infer_on_near_splits_separate(dummy_data_training):

    momenta, cut_mom, near_mom, labels, cut_labs, near_labs, delta_cut, delta_near = dummy_data_training

    fks = FKSPartition(momenta=momenta, labels=labels, all_legs=False)

    cut_momenta, near_momenta, cut_labels, near_labels = fks.cut_near_split(
        delta_cut, delta_near)
    pairs, labs_split = fks.weighting()

    n_gluon = 1

    NN = Model((n_gluon + 2 - 1) * 4,
               near_momenta,
               labs_split[0],
               all_jets=False,
               all_legs=False)
    _, _, _, _, _, _, _, _ = NN.process_training_data()

    model_near, x_mean_near, x_std_near, y_mean_near, y_std_near = train_near_networks(
        pairs=pairs,
        near_momenta=near_momenta,
        NJ_split=labs_split,
        order='LO',
        n_gluon=1,
        delta_near=delta_near,
        points=len(near_momenta) * 2,
        model_dir='',
        epochs=1)

    y_preds_nears, y_pred_nears = infer_on_near_splits_separate(
        NN=NN,
        moms=near_momenta,
        models=model_near,
        x_mean_near=x_mean_near,
        x_std_near=x_std_near,
        y_mean_near=y_mean_near,
        y_std_near=y_std_near)