Beispiel #1
0
def test_setfloatx_correct_values():
    # Keep track of the old value
    old_floatx = floatx()
    # Check correct values
    for value in ['float16', 'float32', 'float64']:
        set_floatx(value)
        assert floatx() == value
    # Restore old value
    set_floatx(old_floatx)
Beispiel #2
0
def test_setfloatx_incorrect_values():
    # Keep track of the old value
    old_floatx = floatx()
    # Try some incorrect values
    initial = floatx()
    for value in ['', 'beerfloat', 123]:
        with pytest.raises(Exception):
            set_floatx(value)
    assert floatx() == initial
    # Restore old value
    set_floatx(old_floatx)
def _random_prep(dtype=None, rng=None):
    """Helper function for random functions """
    if dtype is None:
        dtype = floatx()
    if rng is None:
        rng = make_rng()
    return dtype, rng
def mean(x, axis=None, keepdims=False):
    """Mean of a tensor, alongside the specified axis. """
    dtype = None
    # bool is available since theano v0.9dev
    if 'int' in x.dtype or x.dtype == 'bool':
        dtype = floatx()
    return T.mean(x, axis=axis, keepdims=keepdims, dtype=dtype)
def placeholder(shape=None, ndim=None, dtype=None, sparse=False, name=None):
    """Instantiate an input data placeholder variable. """
    if dtype is None:
        dtype = floatx()
    if shape is None and ndim is None:
        raise ValueError('Specify either a shape or ndim value.')
    if shape is not None:
        ndim = len(shape)

    broadcast = (False,) * ndim
    x = T.TensorType(dtype, broadcast)(name)
    return x
Beispiel #6
0
def test_set_floatx():
    """
    Make sure that changes to the global floatx are effectively
    taken into account by the backend.
    """
    # Keep track of the old value
    old_floatx = floatx()

    set_floatx('float16')
    var = BTH.variable([10])
    check_dtype(var, 'float16')

    set_floatx('float64')
    var = BTH.variable([10])
    check_dtype(var, 'float64')

    # Restore old value
    set_floatx(old_floatx)
Beispiel #7
0
def variable(value, dtype=None, name=None):
    """Instantiates a variable and returns it.

    # Arguments
        value: Numpy array, initial value of the tensor.
        dtype: Tensor type.
        name: Optional name string for the tensor.

    # Returns
        A variable instance .
    """
    if dtype is None:
        dtype = floatx()

    if hasattr(value, 'eval'):
        value = value.eval()

    return np.asarray(value, dtype=dtype)
def variable(value, dtype=None, name=None):
    """Instantiates a variable and returns it.
    
    # Arguments
        value: Numpy array, initial value of the tensor.
        dtype: Tensor type.
        name: Optional name string for the tensor.
    
    # Returns
        A variable instance.
    """
    if dtype is None:
        dtype = floatx()

    if isinstance(value, (theano.tensor.TensorVariable,
                          theano.tensor.sharedvar.TensorSharedVariable,
                          theano.tensor.TensorConstant)):
        value = value.eval()
    value = np.asarray(value, dtype=dtype)
    variable = theano.shared(value=value,
                             name=name,
                             strict=False)
    return variable
def eye(size, dtype=None, name=None):
    """Instantiates an identity matrix. """
    if dtype is None:
        dtype = floatx()
    return variable(np.eye(size), dtype, name)
def ones(shape, dtype=None, name=None):
    """Instantiates an all-ones variable. """
    if dtype is None:
        dtype = floatx()
    return variable(np.ones(shape), dtype, name)