Beispiel #1
0
sys.path.append('../../')
import nba_net.core.networks as net

#
# DB_URL = \
#     "mongodb+srv://cs4701:[email protected]/" + \
#     "attempt1?retryWrites=true"

DB_URL = "mongodb://localhost:27017/"


def get_team_stats():
    """Returns a list of all the team-level ML stats for each game, as well as
    the outcome. Each list has the form [0..., 0..., 0..., 0..., ..., 1/0]"""
    # client = pymongo.MongoClient(DB_URL, ssl=True, ssl_cert_reqs=ssl.CERT_NONE)
    client = pymongo.MongoClient(DB_URL)
    db = client.attempt1
    ml_stats = db.learningStats
    parsed_stats = []
    for game_stats in ml_stats.find():
        del game_stats["_id"]
        del game_stats["game_id"]
        parsed_stats.append(list(game_stats.values()))
    return parsed_stats


if __name__ == "__main__":
    team_stats = get_team_stats()
    model = net.OneLayer(8, 5, 1)
    net.train_model(15000, 0.06, model, team_stats)
Beispiel #2
0
def exp_train():
    """Exports trained model."""
    team_stats = get_team_stats()
    model = net.OneLayer(30, 15, 1)
    net.train_model(10000, 0.0005, model, team_stats, no_graph=True)
    return model
Beispiel #3
0
# DB_URL = \
#     "mongodb+srv://cs4701:[email protected]/" + \
#     "attempt2?retryWrites=true"

DB_URL = "mongodb://localhost:27017/"


def get_stats():
    """Returns a list of all the team-level ML stats for each game, as well as
    the outcome. Each list has the form [0..., 0..., 0..., 0..., ..., 1/0]"""
    # client = pymongo.MongoClient(DB_URL, ssl=True, ssl_cert_reqs=ssl.CERT_NONE)
    client = pymongo.MongoClient(DB_URL)
    db = client.attempt2
    ml_stats = db.learningStats
    parsed_stats = []
    for game_stats in ml_stats.find():
        del game_stats["_id"]
        del game_stats["game_id"]
        winner = game_stats["winner"]
        del game_stats["winner"]
        stats = list(game_stats.values())
        stats.append(winner)
        parsed_stats.append(stats)
    return parsed_stats


if __name__ == "__main__":
    team_stats = get_stats()
    model = net.OneLayer(8, 7, 1)
    net.train_model(1750, 0.01, model, team_stats)
Beispiel #4
0
        away_data.append(pd["plus_minus"])

    return home_data, away_data


def get_team_stats():
    """Returns a list of all the team-level ML stats for each game, as well as
    the outcome. Each list has the form [0..., 0..., 0..., 0..., ..., 1/0]"""
    client = pymongo.MongoClient(DB_URL)
    db = client.attempt4
    ml_stats = db.learningStats
    parsed_stats = []
    for game_stats in ml_stats.find():
        temp_list = []
        del game_stats["_id"]
        del game_stats["game_id"]
        winner = game_stats["winner"]
        del game_stats["winner"]
        home_player_data, away_player_data = filter_data(game_stats)
        temp_list = temp_list + home_player_data
        temp_list = temp_list + away_player_data
        temp_list.append(winner)
        parsed_stats.append(temp_list)
    return parsed_stats


if __name__ == "__main__":
    team_stats = get_team_stats()
    model = net.OneLayer(30, 15, 1)
    net.train_model(10000, 0.0005, model, team_stats)
Beispiel #5
0
def exp_train():
    """Exports trained model."""
    team_stats = get_team_stats()
    model = net.OneLayer(1, 5, 1)
    net.train_model(2000, 0.01, model, team_stats)
    return model
Beispiel #6
0
def exp_train():
    """Exports trained model."""
    team_stats = get_stats()
    model = net.OneLayer(8, 7, 1)
    net.train_model(1750, 0.01, model, team_stats, no_graph=True)
    return model