def process_mcmc(datrnk, sample, cap, cosmology, cutoffval):


    mcmcfns = glob("{0}/out/sim/{1}/{2}/{3}/mcmc/new/*.mock".
                                 format(datrnk, sample, cap, cosmology))

    sim_nz = nzobj(datrnk, sample, cap, cosmology, cutoffval)
    sim_nz.read_json()

    downfns = glob("{0}/out/sim/{1}/{2}/{3}/mcmc/new/*.down".
                                 format(datrnk, sample, cap, cosmology))


    for mock in mcmcfns:

        simdown = mock[:-4] + "down"
        print simdown

        if not simdown in downfns:

            try:
                sim_nz.mock = np.genfromtxt(mock)
                sim_nz.fibre_collisions()
                sim_nz.sim_down(simdown)
            except:
                continue
def process_mocks(dattop, sample, cap, cosmology, cutoffval):

    # First get the polynomial fit to the average of all the mock number densities
#    mock_avg_poly()

    # initialise an nzobj
    mock_nz = nzobj(dattop, sample, cap, cosmology, cutoffval)

    # load the json data into the nzobj
    mock_nz.read_json()

    # give the nzobj the polynomial coefficients to use for downsampling
    mock_nz.popt = np.loadtxt(dattop + "/out/{0}/{1}/{2}/mocks/avg_poly_coeffs.dat".format(sample, cap, cosmology))

    # glob all the mocks
    mockfns = glob("{0}/in/boss/{1}/{2}/mocks/*.rdz".
                                 format(dattop, sample, cap))

    # now process all those bad boys
    for mockfn in mockfns:

        mockN = mockfn.split("/")[-1].split("_")[1].split(".")[0]

        print "\n", "mock\t", mockN, "\n"
        mock_nz.radecz = np.loadtxt(mockfn)

        mock_nz.rdz_down("/mocks/rdz/{0}.dat".format(mockN))
Beispiel #3
0
def plot_nz(fn):

    werds = fn.split("/")
    outi = werds.index("out")

    dattop = "/".join(werds[:outi])
    sample = werds[outi + 1]
    cap = werds[outi + 2]
    cosmo = werds[outi + 3]

    nob = nzobj(dattop, sample, cap, cosmo, 0.65)

    nob.read_json()

    nob.radecz = np.loadtxt(fn)

    nob._compute_z_nbar()

    fig = plt.figure()

    ax = fig.add_subplot(111)

    l, = ax.plot(nob.z_cen, nob.nbar)

    ax.set_xlabel(r"$z$")
    ax.set_ylabel(r"$ n(z)$")

    picname = ''.join(os.path.basename(fn).split(".")[:-1]) + ".pdf"
    plotaddress = os.path.dirname(fn) + "/plots/" + picname

    fig.savefig(plotaddress)

    os.system("scp {0} broiler:~/public_html/tinker/".format(plotaddress))
    os.system("ssh broiler chmod 644 /home/kilian/public_html/tinker/{0}"
                  .format(picname))
def process_mocks(dattop, sample, cap, cosmology, cutoffval):

    # First get the polynomial fit to the average of all the mock number densities
    #    mock_avg_poly()

    # initialise an nzobj
    mock_nz = nzobj(dattop, sample, cap, cosmology, cutoffval)

    # load the json data into the nzobj
    mock_nz.read_json()

    # give the nzobj the polynomial coefficients to use for downsampling
    mock_nz.popt = np.loadtxt(dattop +
                              "/out/{0}/{1}/{2}/mocks/avg_poly_coeffs.dat".
                              format(sample, cap, cosmology))

    # glob all the mocks
    mockfns = glob("{0}/in/boss/{1}/{2}/mocks/*.rdz".format(
        dattop, sample, cap))

    # now process all those bad boys
    for mockfn in mockfns:

        mockN = mockfn.split("/")[-1].split("_")[1].split(".")[0]

        print "\n", "mock\t", mockN, "\n"
        mock_nz.radecz = np.loadtxt(mockfn)

        mock_nz.rdz_down("/mocks/rdz/{0}.dat".format(mockN))
def plot_nz(dirnam):

    werds = dirnam.split("/")
    outi = werds.index("out")

    dattop = "/".join(werds[:outi])
    sample = werds[outi + 1]
    cap = werds[outi + 2]
    cosmo = werds[outi + 3]

    allmocks = glob(dirnam + "/*.dat")

    nob = nzobj(dattop, sample, cap, cosmo, 0.65)
    nob.read_json()

    fig = plt.figure()
    ax = fig.add_subplot(111)
    lines = []
    i = 0  # just get the first 100

    for fn in allmocks:

        i += 1
        if i > 100:
            break

        nob.radecz = np.loadtxt(fn)
        nob._compute_z_nbar()

        lines.append(ax.plot(nob.z_cen, nob.nbar, color='b', alpha=0.05))

    datfn = dattop + "/".join([sample, cap, cosmo]) + "/radecz.dat"

    nob.radecz = np.loadtxt(datfn)
    nob._compute_z_nbar()

    lines.append(ax.plot(nob.z_cen, nob.nbar, color='r', alpha=0.5))

    ax.set_xlabel(r"$z$")
    ax.set_ylabel(r"$ n(z)$")
    ax.set_ylim([0.0002, 0.0003])

    picname = "mock_dat_nbars.pdf"
    plotaddress = dirnam + "/plots/" + picname

    fig.savefig(plotaddress)

    os.system("scp {0} broiler:~/public_html/tinker/".format(plotaddress))
    os.system(
        "ssh broiler chmod 644 /home/kilian/public_html/tinker/{0}".format(
            picname))
def plot_nz(dirnam):

    werds = dirnam.split("/")
    outi = werds.index("out")

    dattop = "/".join(werds[:outi])
    sample = werds[outi + 1]
    cap = werds[outi + 2]
    cosmo = werds[outi + 3]

    allmocks = glob(dirnam + "/*.dat")

    nob = nzobj(dattop, sample, cap, cosmo, 0.65)
    nob.read_json()

    fig = plt.figure()
    ax = fig.add_subplot(111)
    lines = []
    i = 0 # just get the first 100

    for fn in allmocks:

        i += 1
        if i > 100:
            break

        nob.radecz = np.loadtxt(fn)
        nob._compute_z_nbar()

        lines.append(ax.plot(nob.z_cen, nob.nbar, color='b', alpha=0.05))

    datfn = dattop + "/out/" + "/".join([sample, cap, cosmo]) + "/radecz.dat"

    nob.radecz = np.loadtxt(datfn)
    nob._compute_z_nbar()

    lines.append(ax.plot(nob.z_cen, nob.nbar, color='r', alpha=0.5))

    ax.set_xlabel(r"$z$")
    ax.set_ylabel(r"$ n(z)$")
    ax.set_ylim([0.000224, 0.000226])

    picname = "mock_dat_nbars.pdf"
    plotaddress = dirnam + "/plots/" + picname

    fig.savefig(plotaddress)

    os.system("scp {0} broiler:~/public_html/tinker/".format(plotaddress))
    os.system("ssh broiler chmod 644 /home/kilian/public_html/tinker/{0}"
                  .format(picname))
Beispiel #7
0
def process_sim(datrnk, simfile, sample, cap, cosmology, cutoffval):

    simout = datrnk + "/out/sim/" + sample + "/" + cap + "/" + cosmology +
    "/" + simfile

    sim_nz = nzobj(datrnk, sample, cap, cosmology, cutoffval)
    sim_nz.read_json()

    sim_nz.mock = np.genfromtxt(simout)

    sim_nz.fibre_collisions()

    hodroot = simfile.split(".")[0]

    print os.path.dirname(simout)
    sim_nz.sim_down(os.path.dirname(simout) + hodroot + ".down")
def process_data(dattop, sample, cap, cosmology, cutoffval):

    data_nz = nzobj(dattop, sample, cap, cosmology, cutoffval)

    data_nz.get_zrange()

    # get the galaxy data to compute number density from
    galfits = fits.open(
        glob("{0}/in/boss/{1}/{2}/*.fits".format(dattop, sample, cap))[0])

    # array of all the RAs Decs and redshifts
    radecz = np.dstack((galfits[1].data["RA"], galfits[1].data["DEC"],
                        galfits[1].data["Z"]))[0]

    # give the rdz to the nzobj
    data_nz.radecz = radecz

    data_nz.fit_polynom()

    data_nz.rdz_down("/radecz.dat")

    data_nz.write_json()
def process_data(dattop, sample, cap, cosmology, cutoffval):

    data_nz = nzobj(dattop, sample, cap, cosmology, cutoffval)

    data_nz.get_zrange()

    # get the galaxy data to compute number density from
    galfits = fits.open(glob("{0}/in/boss/{1}/{2}/*.fits".
                                 format(dattop, sample, cap))[0])

    # array of all the RAs Decs and redshifts
    radecz = np.dstack((galfits[1].data["RA"],
                        galfits[1].data["DEC"],
                        galfits[1].data["Z"]))[0]

    # give the rdz to the nzobj
    data_nz.radecz = radecz

    data_nz.fit_polynom()

    data_nz.rdz_down("/radecz.dat")

    data_nz.write_json()
Beispiel #10
0
def plot_nz(fn):

    werds = fn.split("/")
    outi = werds.index("out")

    dattop = "/".join(werds[:outi])
    sample = werds[outi + 1]
    cap = werds[outi + 2]
    cosmo = werds[outi + 3]

    nob = nzobj(dattop, sample, cap, cosmo, 0.65)

    nob.read_json()

    nob.radecz = np.loadtxt(fn)

    nob._compute_z_nbar()

    fig = plt.figure()

    ax = fig.add_subplot(111)

    l, = ax.plot(nob.z_cen, nob.nbar)

    ax.set_xlabel(r"$z$")
    ax.set_ylabel(r"$ n(z)$")

    picname = ''.join(os.path.basename(fn).split(".")[:-1]) + ".pdf"
    plotaddress = os.path.dirname(fn) + "/plots/" + picname

    fig.savefig(plotaddress)

    os.system("scp {0} broiler:~/public_html/tinker/".format(plotaddress))
    os.system(
        "ssh broiler chmod 644 /home/kilian/public_html/tinker/{0}".format(
            picname))
Beispiel #11
0
def plot_nz(datrnk, fndown):

    sample = "CMASS"
    cap = "NGC"

    fig = plt.figure()
    ax = fig.add_subplot(111)

    # plot corrected
    nob = nzobj(datrnk, sample, cap, "WMAP", 0.65)

    nob.get_zrange()

    ax.scatter(nob.nbar_corr[:, 0], nob.nbar_full,
               color='m', label=r"$n_{corrected}$")

    # plot raw data
    galfits = fits.open(glob("{0}/in/boss/{1}/{2}/*.fits".
                                 format(datrnk, sample, cap))[0])

    # array of all the RAs Decs and redshifts
    radecz = np.dstack((galfits[1].data["RA"],
                        galfits[1].data["DEC"],
                        galfits[1].data["Z"]))[0]

    buf = len(nob.zcen)

    # give the rdz to the nzobj
    nob.radecz = radecz

    nob._compute_z_nbar(buf=buf)

    ldat, = ax.plot(nob.z_cen, nob.nbar, label=r"$n_{data}$")

    # plot downsampled nbar
    nob.radecz = np.loadtxt(fndown)

    nob._compute_z_nbar(buf=5)

    nob.nbar[:5] = 0.
    nob.nbar[-5:] = 0.

    ldown, = ax.plot(nob.z_cen, nob.nbar,
                     color='r', label=r"$n_{downsampled}$")

    ax.set_xlabel(r"$z$")
    ax.set_ylabel(r"$ n(z)$ $(Mpc / h)^{-3}$")
    ax.set_title("CMASS NGC Number Densities")

    ax.set_xlim([0.3, 0.75])
    ax.set_ylim([0., 0.0005])

    handles, labels = ax.get_legend_handles_labels()
    ax.legend(handles, labels)

    picname = "nbar_talk.pdf"
    plotaddress = picname

    fig.savefig(plotaddress)

    os.system("scp {0} broiler:~/public_html/tinker/".format(plotaddress))
    os.system("ssh broiler chmod 644 /home/kilian/public_html/tinker/{0}"
                  .format(picname))