def __init__(
        self,
        *args,
        superclass_wnids,
        dataset_test=None,
        Rules=SoftRules,
        metric=None,
        **kwargs,
    ):
        """Pass wnids to classify.

        Assumes index of each wnid is the index of the wnid in the rules.wnids
        list. This agrees with Node.wnid_to_class_index as of writing, since
        rules.wnids = get_wnids(...).
        """
        # TODO: for now, ignores metric
        super().__init__(*args, **kwargs)

        kwargs["dataset"] = dataset_test
        kwargs.pop("path_graph", "")
        kwargs.pop("path_wnids", "")
        self.rules_test = Rules(*args, **kwargs)
        self.superclass_wnids = superclass_wnids
        self.total = self.correct = 0

        self.mapping_target, self.new_to_old_classes_target = Superclass.build_mapping(
            self.rules_test.tree.wnids_leaves, superclass_wnids)
        self.mapping_pred, self.new_to_old_classes_pred = Superclass.build_mapping(
            self.rules.tree.wnids_leaves, superclass_wnids)

        mapped_classes = [
            self.classes[i] for i in (self.mapping_target >= 0).nonzero()
        ]
        Colors.cyan(
            f"==> Mapped {len(mapped_classes)} classes to your superclasses: "
            f"{mapped_classes}")
                  download=True,
                  transform=transform_test)

assert trainset.classes == testset.classes, (trainset.classes, testset.classes)

trainloader = torch.utils.data.DataLoader(trainset,
                                          batch_size=args.batch_size,
                                          shuffle=True,
                                          num_workers=2)
testloader = torch.utils.data.DataLoader(testset,
                                         batch_size=100,
                                         shuffle=False,
                                         num_workers=2)

Colors.cyan(
    f'Training with dataset {args.dataset} and {len(trainset.classes)} classes'
)

# Model
print('==> Building model..')
model = getattr(models, args.arch)
model_kwargs = {'num_classes': len(trainset.classes)}

if args.pretrained:
    print('==> Loading pretrained model..')
    try:
        net = model(pretrained=True, dataset=args.dataset, **model_kwargs)
    except TypeError as e:  # likely because `dataset` not allowed arg
        print(e)

        try:
Beispiel #3
0
dataset = getattr(data, args.dataset)

dataset_kwargs = generate_kwargs(args, dataset,
    name=f'Dataset {args.dataset}',
    keys=data.custom.keys,
    globals=globals())

trainset = dataset(**dataset_kwargs, root='./data', train=True, download=True, transform=transform_train)
testset = dataset(**dataset_kwargs, root='./data', train=False, download=True, transform=transform_test)

assert trainset.classes == testset.classes, (trainset.classes, testset.classes)

trainloader = torch.utils.data.DataLoader(trainset, batch_size=args.batch_size, shuffle=True, num_workers=2)
testloader = torch.utils.data.DataLoader(testset, batch_size=100, shuffle=False, num_workers=2)

Colors.cyan(f'Training with dataset {args.dataset} and {len(trainset.classes)} classes')

# Model
print('==> Building model..')
model = getattr(models, args.arch)
model_kwargs = {'num_classes': len(trainset.classes) }

if args.pretrained:
    print('==> Loading pretrained model..')
    net = model(pretrained=True, dataset=args.dataset, **model_kwargs)
else:
    print('==> Loading NBDT model..')
    net = ResNet18()
    net = SoftNBDT(pretrained=True, dataset='CIFAR10', arch='ResNet18', model=net)

#Analyzer
Beispiel #4
0
def main():
    maybe_install_wordnet()
    datasets = data.cifar.names + data.imagenet.names + data.custom.names
    parser = argparse.ArgumentParser(description="PyTorch CIFAR Training")
    parser.add_argument("--batch-size",
                        default=512,
                        type=int,
                        help="Batch size used for training")
    parser.add_argument(
        "--epochs",
        "-e",
        default=200,
        type=int,
        help="By default, lr schedule is scaled accordingly",
    )
    parser.add_argument("--dataset", default="CIFAR10", choices=datasets)
    parser.add_argument("--arch",
                        default="ResNet18",
                        choices=list(models.get_model_choices()))
    parser.add_argument("--lr", default=0.1, type=float, help="learning rate")
    parser.add_argument("--resume",
                        "-r",
                        action="store_true",
                        help="resume from checkpoint")

    # extra general options for main script
    parser.add_argument("--path-resume",
                        default="",
                        help="Overrides checkpoint path generation")
    parser.add_argument(
        "--name",
        default="",
        help="Name of experiment. Used for checkpoint filename")
    parser.add_argument(
        "--pretrained",
        action="store_true",
        help="Download pretrained model. Not all models support this.",
    )
    parser.add_argument("--eval", help="eval only", action="store_true")
    parser.add_argument(
        "--dataset-test",
        choices=datasets,
        help="If not set, automatically set to train dataset",
    )
    parser.add_argument(
        "--disable-test-eval",
        help="Allows you to run model inference on a test dataset "
        " different from train dataset. Use an anlayzer to define "
        "a metric.",
        action="store_true",
    )

    # options specific to this project and its dataloaders
    parser.add_argument("--loss",
                        choices=loss.names,
                        default=["CrossEntropyLoss"],
                        nargs="+")
    parser.add_argument("--metric", choices=metrics.names, default="top1")
    parser.add_argument("--analysis",
                        choices=analysis.names,
                        help="Run analysis after each epoch")

    # other dataset, loss or analysis specific options
    data.custom.add_arguments(parser)
    T.add_arguments(parser)
    loss.add_arguments(parser)
    analysis.add_arguments(parser)

    args = parser.parse_args()
    loss.set_default_values(args)

    device = "cuda" if torch.cuda.is_available() else "cpu"
    best_acc = 0  # best test accuracy
    start_epoch = 0  # start from epoch 0 or last checkpoint epoch

    # Data
    print("==> Preparing data..")
    dataset_train = getattr(data, args.dataset)
    dataset_test = getattr(data, args.dataset_test or args.dataset)

    transform_train = dataset_train.transform_train()
    transform_test = dataset_test.transform_val()

    dataset_train_kwargs = generate_kwargs(
        args,
        dataset_train,
        name=f"Dataset {dataset_train.__class__.__name__}",
        globals=locals(),
    )
    dataset_test_kwargs = generate_kwargs(
        args,
        dataset_test,
        name=f"Dataset {dataset_test.__class__.__name__}",
        globals=locals(),
    )
    trainset = dataset_train(
        **dataset_train_kwargs,
        root="./data",
        train=True,
        download=True,
        transform=transform_train,
    )
    testset = dataset_test(
        **dataset_test_kwargs,
        root="./data",
        train=False,
        download=True,
        transform=transform_test,
    )

    assert trainset.classes == testset.classes or args.disable_test_eval, (
        trainset.classes,
        testset.classes,
    )

    trainloader = torch.utils.data.DataLoader(trainset,
                                              batch_size=args.batch_size,
                                              shuffle=True,
                                              num_workers=2)
    testloader = torch.utils.data.DataLoader(testset,
                                             batch_size=100,
                                             shuffle=False,
                                             num_workers=2)

    Colors.cyan(
        f"Training with dataset {args.dataset} and {len(trainset.classes)} classes"
    )
    Colors.cyan(
        f"Testing with dataset {args.dataset_test or args.dataset} and {len(testset.classes)} classes"
    )

    # Model
    print("==> Building model..")
    model = getattr(models, args.arch)

    if args.pretrained:
        print("==> Loading pretrained model..")
        model = make_kwarg_optional(model, dataset=args.dataset)
        net = model(pretrained=True, num_classes=len(trainset.classes))
    else:
        net = model(num_classes=len(trainset.classes))

    net = net.to(device)
    if device == "cuda":
        net = torch.nn.DataParallel(net)
        cudnn.benchmark = True

    checkpoint_fname = generate_checkpoint_fname(**vars(args))
    checkpoint_path = "./checkpoint/{}.pth".format(checkpoint_fname)
    print(f"==> Checkpoints will be saved to: {checkpoint_path}")

    resume_path = args.path_resume or checkpoint_path
    if args.resume:
        # Load checkpoint.
        print("==> Resuming from checkpoint..")
        assert os.path.isdir(
            "checkpoint"), "Error: no checkpoint directory found!"
        if not os.path.exists(resume_path):
            print("==> No checkpoint found. Skipping...")
        else:
            checkpoint = torch.load(resume_path,
                                    map_location=torch.device(device))

            if "net" in checkpoint:
                load_state_dict(net, checkpoint["net"])
                best_acc = checkpoint["acc"]
                start_epoch = checkpoint["epoch"]
                Colors.cyan(
                    f"==> Checkpoint found for epoch {start_epoch} with accuracy "
                    f"{best_acc} at {resume_path}")
            else:
                load_state_dict(net, checkpoint)
                Colors.cyan(f"==> Checkpoint found at {resume_path}")

    # hierarchy
    tree = Tree.create_from_args(args, classes=trainset.classes)

    # loss
    criterion = None
    for _loss in args.loss:
        if criterion is None and not hasattr(nn, _loss):
            criterion = nn.CrossEntropyLoss()
        class_criterion = getattr(loss, _loss)
        loss_kwargs = generate_kwargs(
            args,
            class_criterion,
            name=f"Loss {args.loss}",
            globals=locals(),
        )
        criterion = class_criterion(**loss_kwargs)

    optimizer = optim.SGD(net.parameters(),
                          lr=args.lr,
                          momentum=0.9,
                          weight_decay=5e-4)
    scheduler = optim.lr_scheduler.MultiStepLR(
        optimizer,
        milestones=[int(3 / 7.0 * args.epochs),
                    int(5 / 7.0 * args.epochs)])

    class_analysis = getattr(analysis, args.analysis or "Noop")
    analyzer_kwargs = generate_kwargs(
        args,
        class_analysis,
        name=f"Analyzer {args.analysis}",
        globals=locals(),
    )
    analyzer = class_analysis(**analyzer_kwargs)

    metric = getattr(metrics, args.metric)()

    # Training
    @analyzer.train_function
    def train(epoch):
        if hasattr(criterion, "set_epoch"):
            criterion.set_epoch(epoch, args.epochs)

        print("\nEpoch: %d / LR: %.04f" % (epoch, scheduler.get_last_lr()[0]))
        net.train()
        train_loss = 0
        metric.clear()
        for batch_idx, (inputs, targets) in enumerate(trainloader):
            inputs, targets = inputs.to(device), targets.to(device)
            optimizer.zero_grad()
            outputs = net(inputs)
            loss = criterion(outputs, targets)
            loss.backward()
            optimizer.step()

            train_loss += loss.item()
            metric.forward(outputs, targets)
            transform = trainset.transform_val_inverse().to(device)
            stat = analyzer.update_batch(outputs, targets, transform(inputs))

            progress_bar(
                batch_idx,
                len(trainloader),
                "Loss: %.3f | Acc: %.3f%% (%d/%d) %s" % (
                    train_loss / (batch_idx + 1),
                    100.0 * metric.report(),
                    metric.correct,
                    metric.total,
                    f"| {analyzer.name}: {stat}" if stat else "",
                ),
            )
        scheduler.step()

    @analyzer.test_function
    def test(epoch, checkpoint=True):
        nonlocal best_acc
        net.eval()
        test_loss = 0
        metric.clear()
        with torch.no_grad():
            for batch_idx, (inputs, targets) in enumerate(testloader):
                inputs, targets = inputs.to(device), targets.to(device)
                outputs = net(inputs)

                if not args.disable_test_eval:
                    loss = criterion(outputs, targets)
                    test_loss += loss.item()
                    metric.forward(outputs, targets)
                transform = testset.transform_val_inverse().to(device)
                stat = analyzer.update_batch(outputs, targets,
                                             transform(inputs))

                progress_bar(
                    batch_idx,
                    len(testloader),
                    "Loss: %.3f | Acc: %.3f%% (%d/%d) %s" % (
                        test_loss / (batch_idx + 1),
                        100.0 * metric.report(),
                        metric.correct,
                        metric.total,
                        f"| {analyzer.name}: {stat}" if stat else "",
                    ),
                )

        # Save checkpoint.
        acc = 100.0 * metric.report()
        print("Accuracy: {}, {}/{} | Best Accurracy: {}".format(
            acc, metric.correct, metric.total, best_acc))
        if acc > best_acc and checkpoint:
            Colors.green(f"Saving to {checkpoint_fname} ({acc})..")
            state = {
                "net": net.state_dict(),
                "acc": acc,
                "epoch": epoch,
            }
            os.makedirs("checkpoint", exist_ok=True)
            torch.save(state, f"./checkpoint/{checkpoint_fname}.pth")
            best_acc = acc

    if args.disable_test_eval and (not args.analysis
                                   or args.analysis == "Noop"):
        Colors.red(
            " * Warning: `disable_test_eval` is used but no custom metric "
            "`--analysis` is supplied. I suggest supplying an analysis to perform "
            " custom loss and accuracy calculation.")

    if args.eval:
        if not args.resume and not args.pretrained:
            Colors.red(" * Warning: Model is not loaded from checkpoint. "
                       "Use --resume or --pretrained (if supported)")
        with analyzer.epoch_context(0):
            test(0, checkpoint=False)
    else:
        for epoch in range(start_epoch, args.epochs):
            with analyzer.epoch_context(epoch):
                train(epoch)
                test(epoch)

    print(f"Best accuracy: {best_acc} // Checkpoint name: {checkpoint_fname}")