def main():
    pm = ParticleMesh(ns.BoxSize, ns.Nmesh, dtype='f4')
    if pm.comm.rank == 0:
        
        hf = files.HaloFile(ns.halocatalogue)
        nhalo = hf.nhalo
        halopos = hf.read_pos()
        halopos = pm.comm.bcast(halopos)
    else:
        halopos = pm.comm.bcast(None)

    Ntot = 0
    for round, (P, PL) in enumerate(izip(
                files.read(pm.comm, ns.filename, files.TPMSnapshotFile, 
                    columns=['Position'], bunchsize=ns.bunchsize),
                files.read(pm.comm, ns.halolabel, files.HaloLabelFile, 
                    columns=['Label'], bunchsize=ns.bunchsize),
                )):
        mask = PL['Label'] != 0
        logging.info("Number of particles in halos is %d" % mask.sum())
        P['Position'][mask] = halopos[PL['Label'][mask]]

        P['Position'] *= ns.BoxSize
        layout = pm.decompose(P['Position'])
        tpos = layout.exchange(P['Position'])
        #print tpos.shape
        pm.paint(tpos)
        npaint = pm.comm.allreduce(len(tpos), op=MPI.SUM) 
        nread = pm.comm.allreduce(len(P['Position']), op=MPI.SUM) 
        if pm.comm.rank == 0:
            logging.info('round %d, npaint %d, nread %d' % (round, npaint, nread))
        Ntot = Ntot + nread

    if ns.remove_shotnoise:
        shotnoise = pm.BoxSize ** 3 / Ntot
    else:
        shotnoise = 0

    pm.r2c()

    k, p = measurepower(pm, pm.complex, ns.binshift, ns.remove_cic, shotnoise)

    if pm.comm.rank == 0:
        if ns.output != '-':
            myout = open(ns.output, 'w')
        else:
            myout = stdout
        numpy.savetxt(myout, zip(k, p), '%0.7g')
        myout.flush()

        hf = files.HaloFile(ns.halocatalogue)
        mass = hf.read_mass()
        M1 = ((mass[1:] * 1.0)** 2).sum(dtype='f8') / (1.0 * Ntot) ** 2 * ns.BoxSize ** 3
        logging.info("p[-inf] = %g, M1 = %g" % (p[-1], M1))
Beispiel #2
0
    def parallel_read(self, columns, full=False):
        if comm.rank == 0:
            hf = files.HaloFile(self.pathhalo)
            nhalo = hf.nhalo
            halopos = numpy.float32(hf.read_pos())
            halomass = numpy.float32(hf.read_mass() * self.m0)
            logmass = numpy.log10(halomass)
            halomask = logmass > self.logMmin
            halomask &= logmass < self.logMmax
            self.logger.info("total number of halos in mass range is %d" %
                             halomask.sum())
        else:
            halopos = None
            halomask = None

        halopos = comm.bcast(halopos)
        halomask = comm.bcast(halomask)

        for round, (P, PL) in enumerate(
                izip(
                    files.read(comm,
                               self.pathmatter,
                               files.TPMSnapshotFile,
                               columns=['Position', 'Velocity'],
                               bunchsize=ns.bunchsize),
                    files.read(comm,
                               self.pathlabel,
                               files.HaloLabelFile,
                               columns=['Label'],
                               bunchsize=ns.bunchsize),
                )):
            mask = PL['Label'] != 0
            mask &= halomask[PL['Label']]
            self.logger.info("Number of particles in halos is %d" % mask.sum())

            P['Position'][mask] = halopos[PL['Label'][mask]]

            if self.rsd is not None:
                dir = 'xyz'.index(self.rsd)
                P['Position'][:, dir] += P['Velocity'][:, dir]
                P['Position'][:,
                              dir] %= 1.0  # enforce periodic boundary conditions

            P['Position'] *= self.BoxSize
            P['Velocity'] *= self.BoxSize

            if comm.rank == 0:
                self.logger.info('round %d, nread %d' % (round, nread))

            yield [P.get(key, None) for key in columns]
    def paint(self, ns, pm):
        if pm.comm.rank == 0:
            hf = files.HaloFile(self.pathhalo)
            nhalo = hf.nhalo
            halopos = numpy.float32(hf.read_pos())
            halomass = numpy.float32(hf.read_mass() * self.m0)
            logmass = numpy.log10(halomass)
            halomask = logmass > self.logMmin
            halomask &= logmass < self.logMmax
            logging.info("total number of halos in mass range is %d" % halomask.sum())
        else:
            halopos = None
            halomask = None

        halopos = pm.comm.bcast(halopos)
        halomask = pm.comm.bcast(halomask)

        Ntot = 0
        for round, (P, PL) in enumerate(izip(
                    files.read(pm.comm, self.pathmatter, files.TPMSnapshotFile, 
                        columns=['Position', 'Velocity'], bunchsize=ns.bunchsize),
                    files.read(pm.comm, self.pathlabel, files.HaloLabelFile, 
                        columns=['Label'], bunchsize=ns.bunchsize),
                    )):
            mask = PL['Label'] != 0
            mask &= halomask[PL['Label']]
            logging.info("Number of particles in halos is %d" % mask.sum())

            P['Position'][mask] = halopos[PL['Label'][mask]]

            if self.rsd is not None:
                dir = 'xyz'.index(self.rsd)
                P['Position'][:, dir] += P['Velocity'][:, dir]
                P['Position'][:, dir] %= 1.0 # enforce periodic boundary conditions

            P['Position'] *= ns.BoxSize
            layout = pm.decompose(P['Position'])
            tpos = layout.exchange(P['Position'])
            #print tpos.shape
            pm.paint(tpos)
            npaint = pm.comm.allreduce(len(tpos)) 
            nread = pm.comm.allreduce(len(P['Position'])) 
            if pm.comm.rank == 0:
                logging.info('round %d, npaint %d, nread %d' % (round, npaint, nread))
            Ntot = Ntot + nread

        npaint = pm.comm.allreduce(len(tpos)) 
        return Ntot
Beispiel #4
0
    def read(self, columns, comm, bunchsize):
        Ntot = 0
        # avoid reading Velocity if RSD is not requested.
        # this is only needed for large data like a TPMSnapshot
        # for small Pandas reader etc it doesn't take time to
        # read velocity

        if self.rsd is not None:
            newcolumns = set(columns + ['Velocity'])
        else:
            newcolumns = set(columns)

        if 'Mass' in newcolumns:
            newcolumns.remove('Mass')

        for round, P in enumerate(
                files.read(comm, 
                    self.path, 
                    files.TPMSnapshotFile, 
                    columns=newcolumns, 
                    bunchsize=bunchsize)):

            if 'Position' in P:
                P['Position'] *= self.BoxSize
            P['Mass'] = None
            if 'Velocity' in P:
                P['Velocity'] *= self.BoxSize

            if self.rsd is not None:
                dir = "xyz".index(self.rsd)
                P['Position'][:, dir] += P['Velocity'][:, dir]
                P['Position'][:, dir] %= self.BoxSize[dir]

            yield [P[key] for key in columns]
    def parallel_read(self, columns, full=False):
        if comm.rank == 0:
            hf = files.HaloFile(self.pathhalo)
            nhalo = hf.nhalo
            halopos = numpy.float32(hf.read_pos())
            halomass = numpy.float32(hf.read_mass() * self.m0)
            logmass = numpy.log10(halomass)
            halomask = logmass > self.logMmin
            halomask &= logmass < self.logMmax
            self.logger.info("total number of halos in mass range is %d" % halomask.sum())
        else:
            halopos = None
            halomask = None

        halopos = comm.bcast(halopos)
        halomask = comm.bcast(halomask)

        for round, (P, PL) in enumerate(
            izip(
                files.read(
                    comm,
                    self.pathmatter,
                    files.TPMSnapshotFile,
                    columns=["Position", "Velocity"],
                    bunchsize=ns.bunchsize,
                ),
                files.read(comm, self.pathlabel, files.HaloLabelFile, columns=["Label"], bunchsize=ns.bunchsize),
            )
        ):
            mask = PL["Label"] != 0
            mask &= halomask[PL["Label"]]
            self.logger.info("Number of particles in halos is %d" % mask.sum())

            P["Position"][mask] = halopos[PL["Label"][mask]]

            if self.rsd is not None:
                dir = "xyz".index(self.rsd)
                P["Position"][:, dir] += P["Velocity"][:, dir]
                P["Position"][:, dir] %= 1.0  # enforce periodic boundary conditions

            P["Position"] *= self.BoxSize
            P["Velocity"] *= self.BoxSize

            if comm.rank == 0:
                self.logger.info("round %d, nread %d" % (round, nread))

            yield [P.get(key, None) for key in columns]
    def read(self, columns, comm, bunchsize):
        if comm.rank == 0:
            hf = files.HaloFile(self.pathhalo)
            nhalo = hf.nhalo
            halopos = numpy.float32(hf.read_pos())
            halomass = numpy.float32(hf.read_mass() * self.m0)
            logmass = numpy.log10(halomass)
            halomask = logmass > self.logMmin
            halomask &= logmass < self.logMmax
            logger.info("total number of halos in mass range is %d" % halomask.sum())
        else:
            halopos = None
            halomask = None

        halopos = comm.bcast(halopos)
        halomask = comm.bcast(halomask)

        for round, (P, PL) in enumerate(izip(
                    files.read(comm, self.pathmatter, files.TPMSnapshotFile, 
                        columns=['Position', 'Velocity'], bunchsize=ns.bunchsize),
                    files.read(comm, self.pathlabel, files.HaloLabelFile, 
                        columns=['Label'], bunchsize=ns.bunchsize),
                    )):
            mask = PL['Label'] != 0
            mask &= halomask[PL['Label']]
            logger.info("Number of particles in halos is %d" % mask.sum())

            P['Position'][mask] = halopos[PL['Label'][mask]]

            if self.rsd is not None:
                dir = 'xyz'.index(self.rsd)
                P['Position'][:, dir] += P['Velocity'][:, dir]
                P['Position'][:, dir] %= 1.0 # enforce periodic boundary conditions

            P['Position'] *= self.BoxSize
            P['Velocity'] *= self.BoxSize
            P['Mass'] = None

            if comm.rank == 0:
                logger.info('round %d, nread %d' % (round, nread))

            yield [P[key] for key in columns]
def paint_darkmatter(pm, filename, fileformat):
    pm.real[:] = 0
    Ntot = 0
    for round, P in enumerate(read(pm.comm, filename, TPMSnapshotFile, columns=["Position"], bunchsize=ns.bunchsize)):
        P["Position"] *= ns.BoxSize
        layout = pm.decompose(P["Position"])
        tpos = layout.exchange(P["Position"])
        # print tpos.shape
        pm.paint(tpos)
        npaint = pm.comm.allreduce(len(tpos), op=MPI.SUM)
        nread = pm.comm.allreduce(len(P["Position"]), op=MPI.SUM)
        if pm.comm.rank == 0:
            logging.info("round %d, npaint %d, nread %d" % (round, npaint, nread))
        Ntot = Ntot + nread
    return Ntot
    def paint(self, ns, pm):
        pm.real[:] = 0
        Ntot = 0
        columns = ["Position"]
        if self.rsd is not None or self.mom is not None:
            columns.append("Velocity")

        for round, P in enumerate(
            files.read(pm.comm, self.path, files.TPMSnapshotFile, columns=columns, bunchsize=ns.bunchsize)
        ):

            nread = pm.comm.allreduce(len(P["Position"]))

            if self.rsd is not None:
                dir = "xyz".index(self.rsd)
                P["Position"][:, dir] += P["Velocity"][:, dir]
                P["Position"][:, dir] %= 1.0  # enforce periodic boundary conditions

            P["Position"] *= ns.BoxSize

            layout = pm.decompose(P["Position"])

            P["Position"] = layout.exchange(P["Position"])
            npaint = pm.comm.allreduce(len(P["Position"]))

            if self.mom is not None:
                dir = "xyz".index(self.mom)
                weight = 1.0 + P["Velocity"][:, dir].copy()
                del P["Velocity"]
                weight = layout.exchange(weight)
            else:
                # uniform mass
                weight = 1

            del layout

            pm.paint(P["Position"], weight)

            del P
            del weight

            if pm.comm.rank == 0:
                logging.info("round %d, npaint %d, nread %d" % (round, npaint, nread))
            Ntot = Ntot + nread
        return Ntot
Beispiel #9
0
def paint_darkmatter(pm, filename, fileformat):
    pm.real[:] = 0
    Ntot = 0
    for round, P in enumerate(
            read(pm.comm,
                 filename,
                 TPMSnapshotFile,
                 columns=['Position'],
                 bunchsize=ns.bunchsize)):
        P['Position'] *= ns.BoxSize
        layout = pm.decompose(P['Position'])
        tpos = layout.exchange(P['Position'])
        #print tpos.shape
        pm.paint(tpos)
        npaint = pm.comm.allreduce(len(tpos), op=MPI.SUM)
        nread = pm.comm.allreduce(len(P['Position']), op=MPI.SUM)
        if pm.comm.rank == 0:
            logging.info('round %d, npaint %d, nread %d' %
                         (round, npaint, nread))
        Ntot = Ntot + nread
    return Ntot
Beispiel #10
0
def main():
    comm = MPI.COMM_WORLD
    np = split_size_2d(comm.size)

    grid = [
        numpy.linspace(0, 1.0, np[0] + 1, endpoint=True),
        numpy.linspace(0, 1.0, np[1] + 1, endpoint=True),
    ]
    domain = GridND(grid)
    if comm.rank == 0:
        logging.info('grid %s' % str(grid) )

    [P] = read(comm, ns.filename, TPMSnapshotFile, columns=['Position', 'ID'])

    tpos = P['Position']
    tid = P['ID']
    del P

    Ntot = sum(comm.allgather(len(tpos)))

    if comm.rank == 0:
        logging.info('Total number of particles %d, ll %g' % (Ntot, ns.LinkingLength))
    ll = ns.LinkingLength * Ntot ** -0.3333333

    #print pos
    #print ((pos[0] - pos[1]) ** 2).sum()** 0.5, ll
  
    layout = domain.decompose(tpos, smoothing=ll * 1)

    tpos = layout.exchange(tpos)
    tid = layout.exchange(tid)

    logging.info('domain %d has %d particles' % (comm.rank, len(tid)))

    data = cluster.dataset(tpos, boxsize=1.0)
    fof = cluster.fof(data, linking_length=ll, np=0, verbose=True)
    
    # initialize global labels
    minid = equiv_class(fof.labels, tid, op=numpy.fmin)[fof.labels]
    del fof
    del data
    del tpos
    del tid

    while True:
        # merge, if a particle belongs to several ranks
        # use the global label of the minimal
        minid_new = layout.gather(minid, mode=numpy.fmin)
        minid_new = layout.exchange(minid_new)

        # on my rank, these particles have been merged
        merged = minid_new != minid
        # if no rank has merged any, we are done
        # gl is the global label (albeit with some holes)
        total = comm.allreduce(merged.sum())
            
        if comm.rank == 0:
            print 'merged ', total, 'halos'

        if total == 0:
            del minid_new
            break
        old = minid[merged]
        new = minid_new[merged]
        arg = old.argsort()
        new = new[arg]
        old = old[arg]
        replacesorted(minid, old, new, out=minid)

    minid = layout.gather(minid, mode=numpy.fmin)

    label = assign_halo_label(minid, comm, thresh=ns.nmin) 

    N = halos.count(label, comm=comm)

    if comm.rank == 0:
        print 'total halos is', len(N)

    [P] = read(comm, ns.filename, TPMSnapshotFile, columns=['Position'])

    hpos = halos.centerofmass(label, P['Position'], boxsize=1.0, comm=comm)

    [P] = read(comm, ns.filename, TPMSnapshotFile, columns=['Velocity'])

    hvel = halos.centerofmass(label, P['Velocity'], boxsize=None, comm=comm)

    if comm.rank == 0:
        print N
        print 'total groups', N.shape
        print 'total particles', N.sum()
        print 'above ', ns.nmin, (N >ns.nmin).sum()
        N[0] = -1
        with open(ns.output + '.halo', 'w') as ff:
            numpy.int32(len(N)).tofile(ff)
            numpy.float32(ns.LinkingLength).tofile(ff)
            numpy.int32(N).tofile(ff)
            numpy.float32(hpos).tofile(ff)
            numpy.float32(hvel).tofile(ff)
        print hpos
    del N
    del hpos

    npart = None
    if comm.rank == 0:
        snapshot = Snapshot(ns.filename,TPMSnapshotFile)
        npart = snapshot.npart
        for i in range(len(snapshot.npart)):
            with open(ns.output + '.grp.%02d' % i, 'w') as ff:
                numpy.int32(npart[i]).tofile(ff)
                numpy.float32(ns.LinkingLength).tofile(ff)
                pass
    npart = comm.bcast(npart)

    start = sum(comm.allgather(len(label))[:comm.rank])
    end = sum(comm.allgather(len(label))[:comm.rank+1])
    label = numpy.int32(label)
    written = 0
    for i in range(len(npart)):
        filestart = sum(npart[:i])
        fileend = sum(npart[:i+1])
        mystart = start - filestart
        myend = end - filestart
        if myend <= 0 : continue
        if mystart >= npart[i] : continue
        if myend > npart[i]: myend = npart[i]
        if mystart < 0: mystart = 0
        with open(ns.output + '.grp.%02d' % i, 'r+') as ff:
            ff.seek(8, 0)
            ff.seek(mystart * 4, 1)
            label[written:written + myend - mystart].tofile(ff)
        written += myend - mystart

    return
Beispiel #11
0
def main():
    comm = MPI.COMM_WORLD

    if comm.rank == 0:
        h = files.HaloFile(ns.halocatalogue)
        #print h.read_pos().shape()
        N = h.read('Mass')
        halo_pos = h.read('Position')
    else:
        N = None
        halo_pos = None
    N = comm.bcast(N)
    halo_pos = comm.bcast(halo_pos)
    halo_mass = N * ns.m0

    halo_ind = numpy.digitize(numpy.log10(halo_mass), ns.logMedges)
    Nhalo_per_massbin = numpy.bincount(halo_ind,
                                       minlength=len(ns.logMedges) + 1)

    redges = numpy.linspace(0,
                            ns.Rmax / ns.boxsize,
                            ns.Rbins + 2,
                            endpoint=True)[1:]
    den_prof = numpy.zeros((ns.Rbins, len(ns.logMedges) - 1))
    count_prof = numpy.zeros((ns.Rbins + 2, len(ns.logMedges) + 1))

    Ntot = 0
    for round, (P, PL) in enumerate(
            zip(
                files.read(comm,
                           ns.snapfilename,
                           files.TPMSnapshotFile,
                           columns=['Position', 'Velocity'],
                           bunchsize=ns.bunchsize),
                files.read(comm,
                           ns.halolabel,
                           files.HaloLabelFile,
                           columns=['Label'],
                           bunchsize=ns.bunchsize),
            )):
        m_ind = halo_ind[PL['Label']]
        center = halo_pos[PL['Label']]

        dist = distp(center, P['Position'], 1.0)
        d_ind = numpy.digitize(dist, redges)

        ind = numpy.ravel_multi_index((d_ind, m_ind), count_prof.shape)

        count_prof.flat += numpy.bincount(ind, minlength=count_prof.size)
        Ntot += len(PL['Label'])

    Ntot = comm.allreduce(Ntot)
    count_prof = comm.allreduce(count_prof)
    count_prof = numpy.cumsum(count_prof, axis=0)
    vol = 4 * numpy.pi / 3. * redges**3
    # this is over density averaged over all halos in this mass bin
    den_prof = count_prof[:-1, 1:-1] / vol[:, None] / \
        Nhalo_per_massbin[None, 1:-1] / Ntot - 1

    if comm.rank == 0:
        if ns.output != '-':
            ff = open(ns.output, 'w')
        else:
            ff = stdout
        with ff:
            ff.write('# nhalo_per_massbin: %s\n' %
                     ' '.join([str(n) for n in Nhalo_per_massbin]))
            ff.write('# edges of the mass bins %s\n' %
                     ' '.join([str(m) for m in ns.logMedges]))
            ff.write('# r cumulative_dens_prof\n')
            numpy.savetxt(
                ff,
                numpy.concatenate((redges[:, None] * ns.boxsize, den_prof),
                                  axis=-1))
Beispiel #12
0
def main():
    comm = MPI.COMM_WORLD
 
    if comm.rank == 0:
        h = files.HaloFile(ns.halocatalogue)
        #print h.read_pos().shape()
        N = h.read('Mass')
        halo_pos = h.read('Position')
    else:
        N = None
        halo_pos = None
    N = comm.bcast(N)
    halo_pos = comm.bcast(halo_pos)
    halo_mass = N * ns.m0

    halo_ind = numpy.digitize(numpy.log10(halo_mass), ns.logMedges)
    Nhalo_per_massbin = numpy.bincount(halo_ind, minlength=len(ns.logMedges) + 1)

    redges = numpy.linspace(0, ns.Rmax / ns.boxsize, ns.Rbins + 2, endpoint=True)[1:]
    den_prof = numpy.zeros((ns.Rbins, len(ns.logMedges) - 1))
    count_prof = numpy.zeros((ns.Rbins + 2, len(ns.logMedges) + 1))

    Ntot = 0
    for round, (P, PL) in enumerate(
            zip(files.read(comm, 
                ns.snapfilename, 
                files.TPMSnapshotFile, 
                columns=['Position', 'Velocity'], 
                bunchsize=ns.bunchsize),
            files.read(comm, 
                ns.halolabel, 
                files.HaloLabelFile, 
                columns=['Label'],
                bunchsize=ns.bunchsize),
            )):
        m_ind = halo_ind[PL['Label']]
        center = halo_pos[PL['Label']]

        dist = distp(center, P['Position'], 1.0)
        d_ind = numpy.digitize(dist, redges)
        
        ind = numpy.ravel_multi_index((d_ind, m_ind), 
            count_prof.shape)

        count_prof.flat += numpy.bincount(ind, minlength=count_prof.size)
        Ntot += len(PL['Label'])

    Ntot = comm.allreduce(Ntot)
    count_prof = comm.allreduce(count_prof)
    count_prof = numpy.cumsum(count_prof, axis=0)
    vol = 4 * numpy.pi / 3. * redges ** 3
    # this is over density averaged over all halos in this mass bin
    den_prof = count_prof[:-1, 1:-1] / vol[:, None] / \
        Nhalo_per_massbin[None, 1:-1] / Ntot - 1

    if comm.rank == 0:
        if ns.output != '-':
            ff = open(ns.output, 'w')
        else:
            ff = stdout
        with ff:
            ff.write('# nhalo_per_massbin: %s\n' % ' '.join([str(n) for n in Nhalo_per_massbin]))
            ff.write('# edges of the mass bins %s\n' % 
                ' '.join([str(m) for m in ns.logMedges])
            )
            ff.write('# r cumulative_dens_prof\n')
            numpy.savetxt(ff, numpy.concatenate(
            (redges[:, None] * ns.boxsize, den_prof), axis=-1))
def main():
    pm = ParticleMesh(ns.BoxSize, ns.Nmesh, dtype='f4')
    if pm.comm.rank == 0:

        hf = files.HaloFile(ns.halocatalogue)
        nhalo = hf.nhalo
        halopos = hf.read_pos()
        halopos = pm.comm.bcast(halopos)
    else:
        halopos = pm.comm.bcast(None)

    Ntot = 0
    for round, (P, PL) in enumerate(
            izip(
                files.read(pm.comm,
                           ns.filename,
                           files.TPMSnapshotFile,
                           columns=['Position'],
                           bunchsize=ns.bunchsize),
                files.read(pm.comm,
                           ns.halolabel,
                           files.HaloLabelFile,
                           columns=['Label'],
                           bunchsize=ns.bunchsize),
            )):
        mask = PL['Label'] != 0
        logging.info("Number of particles in halos is %d" % mask.sum())
        P['Position'][mask] = halopos[PL['Label'][mask]]

        P['Position'] *= ns.BoxSize
        layout = pm.decompose(P['Position'])
        tpos = layout.exchange(P['Position'])
        #print tpos.shape
        pm.paint(tpos)
        npaint = pm.comm.allreduce(len(tpos), op=MPI.SUM)
        nread = pm.comm.allreduce(len(P['Position']), op=MPI.SUM)
        if pm.comm.rank == 0:
            logging.info('round %d, npaint %d, nread %d' %
                         (round, npaint, nread))
        Ntot = Ntot + nread

    if ns.remove_shotnoise:
        shotnoise = pm.BoxSize**3 / Ntot
    else:
        shotnoise = 0

    pm.r2c()

    k, p = measurepower(pm, pm.complex, ns.binshift, ns.remove_cic, shotnoise)

    if pm.comm.rank == 0:
        if ns.output != '-':
            myout = open(ns.output, 'w')
        else:
            myout = stdout
        numpy.savetxt(myout, zip(k, p), '%0.7g')
        myout.flush()

        hf = files.HaloFile(ns.halocatalogue)
        mass = hf.read_mass()
        M1 = ((mass[1:] * 1.0)**
              2).sum(dtype='f8') / (1.0 * Ntot)**2 * ns.BoxSize**3
        logging.info("p[-inf] = %g, M1 = %g" % (p[-1], M1))