data = nlab.ArrayCatalog(data) print "stacked data" # Convert to MeshSource object, BoxSize in Mpc/h mesh = data.to_mesh(window='tsc', Nmesh=Nmesh, BoxSize=BoxSize, compensated=True, position='Position') print "converted data" # Get void correlation function from the simulation # Do the Fourier transform t = nlab.FFTCorr(mesh, mode='1d', Nmesh=Nmesh, BoxSize=BoxSize) #, dr = 9.0) gg = t.corr Xigg = gg['corr'] Xir = gg['r'] xi[w + str(realization)] = Xigg # Voids # Do correlation function os.chdir('/') #print(type(realization)) #if not (os.path.exists('/tigress/isk/Documents/research/projects/COLA_runs/plot_data/'+cola+'z'+redshift+sim+'/Xivv_'+crazy+w+d+'_nbodykit_'+sim+realization+c+'_'+scale+binlab+'.dat')): if not os.path.exists(os.path.dirname(filewrite)):
data = {} data['Position'] = da.from_array(np.column_stack((gadget_format[1], gadget_format[2], gadget_format[3])), chunks=(100,3)) data['Velocity'] = da.from_array(np.column_stack((gadget_format[4], gadget_format[5], gadget_format[6])), chunks=(100,3)) #transform.StackColumns data = nlab.ArrayCatalog(data) print "stacked data" # Convert to MeshSource object, BoxSize in Mpc/h mesh = data.to_mesh(window='tsc', Nmesh=Nmesh, BoxSize = BoxSize, compensated=True, position='Position') # Halos # Do correlation function t = nlab.FFTCorr(mesh, mode='1d', Nmesh=Nmesh, BoxSize = BoxSize, dr = 1.0) gg = t.corr Xigg = gg['corr'] Xir = gg['r'] if not os.path.exists(os.path.dirname(file4)): os.makedirs(os.path.dirname(file4)) f = open(file4, 'w+') f.write('# r Xi(r) Xi(r)-ShotNoise\n') f.write('# z = '+zlab +'\n') datacc = np.array([gg['r'],gg['corr'].real,gg['corr'].real - gg.attrs['shotnoise']]) datacc = datacc.T np.savetxt(f, datacc)