Beispiel #1
0
                dS = float(Dnoise[k][l])
                dT = float(Dtemperr[k][l])
                if S == 0:
                    mass[k][l] = 0
                    masserr[k][l] = 0
                if S != 0:
                    mass[k][l] = massF(S,T,kappa,d,temp_mi)
                    masserr[k][l] = mass_errF(S,T,dS,dT,temp_mi,temperr_mi)
        Imasserr.flush()
        Imass.flush()

        ######
        #MASS#
        ######
        #convert back to sdf
        ndf2fits.fits2ndf(massFITS)
        ndf2fits.fits2ndf(masserrFITS)
        mass = 'SMM/'+region+'/Mass'+str(I)+'.sdf'
        masserr ='SMM/'+region+'/masserr'+str(I)+'.sdf'

        #Extract TOTAL clump mass as number
        cmd = '%s/stats ndf=%s %s'%(kapdir,mass,'> /dev/null')
        os.system(cmd)
        cmd = '%s/parget parname=%s applic=%s'%(kapdir,'total','stats') 
        status, output = commands.getstatusoutput(cmd)
        mi = float(output)
        del output
       
        #calculate frac error on the mass and find its mean value, on which the mean mass error is based. 
        fracmass = 'SMM/'+region+'/temp/fracmass_clump'+str(I)+'.sdf'
        cmd = '%s/div in1=%s in2=%s out=%s'%(kapdir,masserr,mass,fracmass)
Beispiel #2
0

########### Bulk Code #############
#Method A = RUMBLE
#Method B = CHEN

inA_fits = 'PerseusWest_20150317-autotemperatureWCSALN_SMT.fits'
errA_fits = 'PerseusWest_20150317-autotemp_errorWCSALN_SMT.fits'

inB_fits = 'tempMap_Her+850_clean.fits'
errB_fits = 'TempMapErr_Her+850_clean.fits'

Beta_fits = 'betaMap_Her+850_clean.fits'
errBeta_fits = 'betaMapErr_Her+850_clean.fits'

inA = ndf2fits.fits2ndf(inA_fits)
inB =  ndf2fits.fits2ndf(inB_fits)
errA = ndf2fits.fits2ndf(errA_fits)
errB =  ndf2fits.fits2ndf(errB_fits)

k = 0

TA = []
TB = []
EA = []
EB = []
Beta = []
eBeta = []

count_lo = 0
count_hi = 0
Beispiel #3
0
    for i in range(0, row):
        for j in range(0, column):
            T = float(temp_data[i][j])
            S = float(s850_data[i][j])
            Mass_data[i][j]  = massF(S,T,kappa,d)
            Mass15_data[i][j]  = massF(S,20,kappa,d)
        #if Mass[i][j] > 0:
            #print Mass[i][j]
  
    #output new values back to FITS file and save
    image_mass.flush() 
    image_mass.close() 
    image_mass15.flush() 
    image_mass15.close() 

    ndf2fits.fits2ndf(massFITS)
    ndf2fits.fits2ndf(mass15FITS)

    #CALCULATE Column density
    #Convert map of mass (in solar masses) into column density (in H2 cm-2) and Extinction (mag)
    M_x = 1.989E33 #g
    N = 1
    au = 14959787100000 #cm
    m_h = 1.67262178E-24 #g
    mu = 2.8 #333  #ratio of H2 to He (Kauffmann et al. 2008)

    #pixel area
    A = ((((a*d)*au)**2.0)*N) #in cm^2 
    f = M_x/(mu*m_h*A) #column density per cm^2 

    mass = 'CDmaps/mass/'+region+'_mass.sdf'
Beispiel #4
0
# freefree
div2 = "%s/div in1=%s in2=%s out=%s" % (kapdir, mask450FF, mask850FF, ratioFF)
os.system(div2)

ndf2fits.ndf2fits(ratio)
ndf2fits.ndf2fits(ratioFF)

temperature(ratio, ratio_fits, ratio_fits, 1.8, "FALSE")
temperature(ratioFF, ratioFF_fits, ratioFF_fits, 1.8, "FALSE")

mv1 = "mv %s %s" % (ratio_fits, temp_fits)
mv2 = "mv %s %s" % (ratioFF_fits, tempFF_fits)
os.system(mv1)
os.system(mv2)

ndf2fits.fits2ndf(temp_fits)
ndf2fits.fits2ndf(tempFF_fits)

# compare temp maps
submap = "maps/s21/submap.sdf"
sub = "%s/sub in1=%s in2=%s out=%s" % (kapdir, tempFF, temp, submap)
os.system(sub)

"""
################################
#### calculate columndensity ###  #see run26
################################

#deffine constants
kappa = 0.012 #cm^2 g^-1
d = 500 #pc