Beispiel #1
0
    def test_runnable(self):

        # First index some random vectors
        matrix = numpy.zeros((1000,200))
        for i in xrange(1000):
            v = numpy.random.randn(200)
            matrix[i] = v
            self.engine.store_vector(v)
            self.engine_perm.store_vector(v)

        # Then update permuted index
        self.permutations.build_permuted_index()

        # Do random query on engine with permutations meta-hash
        print '\nNeighbour distances with permuted index:'
        query = numpy.random.randn(200)
        results = self.engine_perm.neighbours(query)
        dists = [x[2] for x in results]
        print dists

        # Do random query on engine without permutations meta-hash
        print '\nNeighbour distances without permuted index (distances should be larger):'
        results = self.engine.neighbours(query)
        dists = [x[2] for x in results]
        print dists

        # Real neighbours
        print '\nReal neighbour distances:'
        query = query.reshape((1,200))
        dists = CosineDistance().distance_matrix(matrix,query)
        dists = dists.reshape((-1,))
        dists = sorted(dists)
        print dists[:10]
Beispiel #2
0
    def test_runnable(self):

        # First index some random vectors
        matrix = numpy.zeros((1000, 200))
        for i in xrange(1000):
            v = numpy.random.randn(200)
            matrix[i] = v
            self.engine.store_vector(v)
            self.engine_perm.store_vector(v)

        # Then update permuted index
        self.permutations.build_permuted_index()

        # Do random query on engine with permutations meta-hash
        print '\nNeighbour distances with permuted index:'
        query = numpy.random.randn(200)
        results = self.engine_perm.neighbours(query)
        dists = [x[2] for x in results]
        print dists

        # Do random query on engine without permutations meta-hash
        print '\nNeighbour distances without permuted index (distances should be larger):'
        results = self.engine.neighbours(query)
        dists = [x[2] for x in results]
        print dists

        # Real neighbours
        print '\nReal neighbour distances:'
        query = query.reshape((1, 200))
        dists = CosineDistance().distance_matrix(matrix, query)
        dists = dists.reshape((-1, ))
        dists = sorted(dists)
        print dists[:10]
Beispiel #3
0
def example2():

    # Dimension of feature space
    DIM = 100

    # Number of data points (dont do too much because of exact search)
    POINTS = 20000

    ##########################################################

    print 'Performing indexing with HashPermutations...'
    t0 = time.time()

    # Create permutations meta-hash
    permutations = HashPermutations('permut')

    # Create binary hash as child hash
    rbp_perm = RandomBinaryProjections('rbp_perm', 14)
    rbp_conf = {'num_permutation':50,'beam_size':10,'num_neighbour':100}

    # Add rbp as child hash of permutations hash
    permutations.add_child_hash(rbp_perm, rbp_conf)

    # Create engine
    engine_perm = Engine(DIM, lshashes=[permutations], distance=CosineDistance())

    # First index some random vectors
    matrix = numpy.zeros((POINTS,DIM))
    for i in xrange(POINTS):
        v = numpy.random.randn(DIM)
        matrix[i] = v
        engine_perm.store_vector(v)

    # Then update permuted index
    permutations.build_permuted_index()

    t1 = time.time()
    print 'Indexing took %f seconds' % (t1-t0)

    # Get random query vector
    query = numpy.random.randn(DIM)

    # Do random query on engine 3
    print '\nNeighbour distances with HashPermutations:'
    print '  -> Candidate count is %d' % engine_perm.candidate_count(query)
    results = engine_perm.neighbours(query)
    dists = [x[2] for x in results]
    print dists

    # Real neighbours
    print '\nReal neighbour distances:'
    query = query.reshape((1,DIM))
    dists = CosineDistance().distance_matrix(matrix,query)
    dists = dists.reshape((-1,))
    dists = sorted(dists)
    print dists[:10]

    ##########################################################

    print '\nPerforming indexing with HashPermutationMapper...'
    t0 = time.time()

    # Create permutations meta-hash
    permutations2 = HashPermutationMapper('permut2')

    # Create binary hash as child hash
    rbp_perm2 = RandomBinaryProjections('rbp_perm2', 14)

    # Add rbp as child hash of permutations hash
    permutations2.add_child_hash(rbp_perm2)

    # Create engine
    engine_perm2 = Engine(DIM, lshashes=[permutations2], distance=CosineDistance())

    # First index some random vectors
    matrix = numpy.zeros((POINTS,DIM))
    for i in xrange(POINTS):
        v = numpy.random.randn(DIM)
        matrix[i] = v
        engine_perm2.store_vector(v)

    t1 = time.time()
    print 'Indexing took %f seconds' % (t1-t0)

    # Get random query vector
    query = numpy.random.randn(DIM)

    # Do random query on engine 4
    print '\nNeighbour distances with HashPermutationMapper:'
    print '  -> Candidate count is %d' % engine_perm2.candidate_count(query)
    results = engine_perm2.neighbours(query)
    dists = [x[2] for x in results]
    print dists

    # Real neighbours
    print '\nReal neighbour distances:'
    query = query.reshape((1,DIM))
    dists = CosineDistance().distance_matrix(matrix,query)
    dists = dists.reshape((-1,))
    dists = sorted(dists)
    print dists[:10]

    ##########################################################

    print '\nPerforming indexing with mutliple binary hashes...'
    t0 = time.time()

    hashes = []
    for k in range(20):
        hashes.append(RandomBinaryProjections('rbp_%d' % k, 10))

    # Create engine
    engine_rbps = Engine(DIM, lshashes=hashes, distance=CosineDistance())

    # First index some random vectors
    matrix = numpy.zeros((POINTS,DIM))
    for i in xrange(POINTS):
        v = numpy.random.randn(DIM)
        matrix[i] = v
        engine_rbps.store_vector(v)

    t1 = time.time()
    print 'Indexing took %f seconds' % (t1-t0)

    # Get random query vector
    query = numpy.random.randn(DIM)

    # Do random query on engine 4
    print '\nNeighbour distances with mutliple binary hashes:'
    print '  -> Candidate count is %d' % engine_rbps.candidate_count(query)
    results = engine_rbps.neighbours(query)
    dists = [x[2] for x in results]
    print dists

    # Real neighbours
    print '\nReal neighbour distances:'
    query = query.reshape((1,DIM))
    dists = CosineDistance().distance_matrix(matrix,query)
    dists = dists.reshape((-1,))
    dists = sorted(dists)
    print dists[:10]
Beispiel #4
0
def example1():

    # Dimension of feature space
    DIM = 100

    # Number of data points (dont do too much because of exact search)
    POINTS = 10000

    print('Creating engines')

    # We want 12 projections, 20 results at least
    rbpt = RandomBinaryProjectionTree('rbpt', 20, 20)

    # Create engine 1
    engine_rbpt = Engine(DIM, lshashes=[rbpt], distance=CosineDistance())

    # Create binary hash as child hash
    rbp = RandomBinaryProjections('rbp1', 20)

    # Create engine 2
    engine = Engine(DIM, lshashes=[rbp], distance=CosineDistance())

    # Create permutations meta-hash
    permutations = HashPermutations('permut')

    # Create binary hash as child hash
    rbp_perm = RandomBinaryProjections('rbp_perm', 20)
    rbp_conf = {'num_permutation': 50, 'beam_size': 10, 'num_neighbour': 100}

    # Add rbp as child hash of permutations hash
    permutations.add_child_hash(rbp_perm, rbp_conf)

    # Create engine 3
    engine_perm = Engine(DIM,
                         lshashes=[permutations],
                         distance=CosineDistance())

    # Create permutations meta-hash
    permutations2 = HashPermutationMapper('permut2')

    # Create binary hash as child hash
    rbp_perm2 = RandomBinaryProjections('rbp_perm2', 12)

    # Add rbp as child hash of permutations hash
    permutations2.add_child_hash(rbp_perm2)

    # Create engine 3
    engine_perm2 = Engine(DIM,
                          lshashes=[permutations2],
                          distance=CosineDistance())

    print('Indexing %d random vectors of dimension %d' % (POINTS, DIM))

    # First index some random vectors
    matrix = numpy.zeros((POINTS, DIM))
    for i in xrange(POINTS):
        v = numpy.random.randn(DIM)
        matrix[i, :] = nearpy.utils.utils.unitvec(v)
        engine.store_vector(v, i)
        engine_rbpt.store_vector(v, i)
        engine_perm.store_vector(v, i)
        engine_perm2.store_vector(v, i)

    print('Buckets 1 = %d' % len(engine.storage.buckets['rbp1'].keys()))
    print('Buckets 2 = %d' % len(engine_rbpt.storage.buckets['rbpt'].keys()))

    print('Building permuted index for HashPermutations')

    # Then update permuted index
    permutations.build_permuted_index()

    print('Generate random data')

    # Get random query vector
    query = numpy.random.randn(DIM)

    # Do random query on engine 1
    print('\nNeighbour distances with RandomBinaryProjectionTree:')
    print('  -> Candidate count is %d' % engine_rbpt.candidate_count(query))
    results = engine_rbpt.neighbours(query)
    print_results(results)

    # Do random query on engine 2
    print('\nNeighbour distances with RandomBinaryProjections:')
    print('  -> Candidate count is %d' % engine.candidate_count(query))
    results = engine.neighbours(query)
    print_results(results)

    # Do random query on engine 3
    print('\nNeighbour distances with HashPermutations:')
    print('  -> Candidate count is %d' % engine_perm.candidate_count(query))
    results = engine_perm.neighbours(query)
    print_results(results)

    # Do random query on engine 4
    print('\nNeighbour distances with HashPermutations2:')
    print('  -> Candidate count is %d' % engine_perm2.candidate_count(query))
    results = engine_perm2.neighbours(query)
    print_results(results)

    # Real neighbours
    print('\nReal neighbour distances:')
    query = nearpy.utils.utils.unitvec(query)
    query = query.reshape((DIM, 1))
    dists = CosineDistance().distance(matrix, query)
    dists = dists.reshape((-1, ))
    # dists = sorted(dists)

    dists_argsort = numpy.argsort(dists)

    results = [(None, d, dists[d]) for d in dists_argsort[:10]]
    print_results(results)
Beispiel #5
0
def example2():

    # Dimension of feature space
    DIM = 100

    # Number of data points (dont do too much because of exact search)
    POINTS = 20000

    ##########################################################

    print 'Performing indexing with HashPermutations...'
    t0 = time.time()

    # Create permutations meta-hash
    permutations = HashPermutations('permut')

    # Create binary hash as child hash
    rbp_perm = RandomBinaryProjections('rbp_perm', 14)
    rbp_conf = {'num_permutation': 50, 'beam_size': 10, 'num_neighbour': 100}

    # Add rbp as child hash of permutations hash
    permutations.add_child_hash(rbp_perm, rbp_conf)

    # Create engine
    engine_perm = Engine(DIM,
                         lshashes=[permutations],
                         distance=CosineDistance())

    # First index some random vectors
    matrix = numpy.zeros((POINTS, DIM))
    for i in xrange(POINTS):
        v = numpy.random.randn(DIM)
        matrix[i] = v
        engine_perm.store_vector(v)

    # Then update permuted index
    permutations.build_permuted_index()

    t1 = time.time()
    print 'Indexing took %f seconds' % (t1 - t0)

    # Get random query vector
    query = numpy.random.randn(DIM)

    # Do random query on engine 3
    print '\nNeighbour distances with HashPermutations:'
    print '  -> Candidate count is %d' % engine_perm.candidate_count(query)
    results = engine_perm.neighbours(query)
    dists = [x[2] for x in results]
    print dists

    # Real neighbours
    print '\nReal neighbour distances:'
    query = query.reshape((1, DIM))
    dists = CosineDistance().distance_matrix(matrix, query)
    dists = dists.reshape((-1, ))
    dists = sorted(dists)
    print dists[:10]

    ##########################################################

    print '\nPerforming indexing with HashPermutationMapper...'
    t0 = time.time()

    # Create permutations meta-hash
    permutations2 = HashPermutationMapper('permut2')

    # Create binary hash as child hash
    rbp_perm2 = RandomBinaryProjections('rbp_perm2', 14)

    # Add rbp as child hash of permutations hash
    permutations2.add_child_hash(rbp_perm2)

    # Create engine
    engine_perm2 = Engine(DIM,
                          lshashes=[permutations2],
                          distance=CosineDistance())

    # First index some random vectors
    matrix = numpy.zeros((POINTS, DIM))
    for i in xrange(POINTS):
        v = numpy.random.randn(DIM)
        matrix[i] = v
        engine_perm2.store_vector(v)

    t1 = time.time()
    print 'Indexing took %f seconds' % (t1 - t0)

    # Get random query vector
    query = numpy.random.randn(DIM)

    # Do random query on engine 4
    print '\nNeighbour distances with HashPermutationMapper:'
    print '  -> Candidate count is %d' % engine_perm2.candidate_count(query)
    results = engine_perm2.neighbours(query)
    dists = [x[2] for x in results]
    print dists

    # Real neighbours
    print '\nReal neighbour distances:'
    query = query.reshape((1, DIM))
    dists = CosineDistance().distance_matrix(matrix, query)
    dists = dists.reshape((-1, ))
    dists = sorted(dists)
    print dists[:10]

    ##########################################################

    print '\nPerforming indexing with mutliple binary hashes...'
    t0 = time.time()

    hashes = []
    for k in range(20):
        hashes.append(RandomBinaryProjections('rbp_%d' % k, 10))

    # Create engine
    engine_rbps = Engine(DIM, lshashes=hashes, distance=CosineDistance())

    # First index some random vectors
    matrix = numpy.zeros((POINTS, DIM))
    for i in xrange(POINTS):
        v = numpy.random.randn(DIM)
        matrix[i] = v
        engine_rbps.store_vector(v)

    t1 = time.time()
    print 'Indexing took %f seconds' % (t1 - t0)

    # Get random query vector
    query = numpy.random.randn(DIM)

    # Do random query on engine 4
    print '\nNeighbour distances with mutliple binary hashes:'
    print '  -> Candidate count is %d' % engine_rbps.candidate_count(query)
    results = engine_rbps.neighbours(query)
    dists = [x[2] for x in results]
    print dists

    # Real neighbours
    print '\nReal neighbour distances:'
    query = query.reshape((1, DIM))
    dists = CosineDistance().distance_matrix(matrix, query)
    dists = dists.reshape((-1, ))
    dists = sorted(dists)
    print dists[:10]
Beispiel #6
0
def example1():

    # Dimension of feature space
    DIM = 100

    # Number of data points (dont do too much because of exact search)
    POINTS = 10000

    print 'Creating engines'

    # We want 12 projections, 20 results at least
    rbpt = RandomBinaryProjectionTree('rbpt', 20, 20)

    # Create engine 1
    engine_rbpt = Engine(DIM, lshashes=[rbpt], distance=CosineDistance())

    # Create binary hash as child hash
    rbp = RandomBinaryProjections('rbp1', 20)

    # Create engine 2
    engine = Engine(DIM, lshashes=[rbp], distance=CosineDistance())

    # Create permutations meta-hash
    permutations = HashPermutations('permut')

    # Create binary hash as child hash
    rbp_perm = RandomBinaryProjections('rbp_perm', 20)
    rbp_conf = {'num_permutation':50,'beam_size':10,'num_neighbour':100}

    # Add rbp as child hash of permutations hash
    permutations.add_child_hash(rbp_perm, rbp_conf)

    # Create engine 3
    engine_perm = Engine(DIM, lshashes=[permutations], distance=CosineDistance())

    # Create permutations meta-hash
    permutations2 = HashPermutationMapper('permut2')

    # Create binary hash as child hash
    rbp_perm2 = RandomBinaryProjections('rbp_perm2', 12)

    # Add rbp as child hash of permutations hash
    permutations2.add_child_hash(rbp_perm2)

    # Create engine 3
    engine_perm2 = Engine(DIM, lshashes=[permutations2], distance=CosineDistance())

    print 'Indexing %d random vectors of dimension %d' % (POINTS, DIM)

    # First index some random vectors
    matrix = numpy.zeros((POINTS,DIM))
    for i in xrange(POINTS):
        v = numpy.random.randn(DIM)
        matrix[i] = v
        engine.store_vector(v)
        engine_rbpt.store_vector(v)
        engine_perm.store_vector(v)
        engine_perm2.store_vector(v)

    print 'Buckets 1 = %d' % len(engine.storage.buckets['rbp1'].keys())
    print 'Buckets 2 = %d' % len(engine_rbpt.storage.buckets['rbpt'].keys())

    print 'Building permuted index for HashPermutations'

    # Then update permuted index
    permutations.build_permuted_index()

    print 'Generate random data'

    # Get random query vector
    query = numpy.random.randn(DIM)

    # Do random query on engine 1
    print '\nNeighbour distances with RandomBinaryProjectionTree:'
    print '  -> Candidate count is %d' % engine_rbpt.candidate_count(query)
    results = engine_rbpt.neighbours(query)
    dists = [x[2] for x in results]
    print dists

    # Do random query on engine 2
    print '\nNeighbour distances with RandomBinaryProjections:'
    print '  -> Candidate count is %d' % engine.candidate_count(query)
    results = engine.neighbours(query)
    dists = [x[2] for x in results]
    print dists

    # Do random query on engine 3
    print '\nNeighbour distances with HashPermutations:'
    print '  -> Candidate count is %d' % engine_perm.candidate_count(query)
    results = engine_perm.neighbours(query)
    dists = [x[2] for x in results]
    print dists

    # Do random query on engine 4
    print '\nNeighbour distances with HashPermutations2:'
    print '  -> Candidate count is %d' % engine_perm2.candidate_count(query)
    results = engine_perm2.neighbours(query)
    dists = [x[2] for x in results]
    print dists

    # Real neighbours
    print '\nReal neighbour distances:'
    query = query.reshape((1,DIM))
    dists = CosineDistance().distance_matrix(matrix,query)
    dists = dists.reshape((-1,))
    dists = sorted(dists)
    print dists[:10]