Beispiel #1
0
    def __init__(
        self,
        n_mel_channels: int,
        n_flows: int,
        n_group: int,
        n_early_every: int,
        n_early_size: int,
        n_wn_channels: int,
        n_wn_layers: int,
        wn_kernel_size: int,
    ):
        """
        WaveGlow module

        Args:
            n_mel_channels (int): Number of mel channels to output.
            n_flows (int): Number of flow layers
            n_group (int): Number of groups to respace the inputs
            n_early_every (int): Every n_early_every layers, n_early_size gets skip connected to the output
            n_early_size (int): The size of the chunk to be skip connected
            n_wn_channels (int): Number of channels for the non-invertible wavenet transformation
            n_wn_layers (int): Number of layers for the non-invertible wavenet transformation
            wn_kernel_size (int): Kernel size for the non-invertible wavenet transformation
        """
        super().__init__()

        self.upsample = torch.nn.ConvTranspose1d(n_mel_channels,
                                                 n_mel_channels,
                                                 1024,
                                                 stride=256)
        self.n_mel_channels = n_mel_channels
        assert n_group % 2 == 0
        self.n_flows = n_flows
        self.n_group = n_group
        self.n_early_every = n_early_every
        self.n_early_size = n_early_size
        self.wavenet = torch.nn.ModuleList()
        self.convinv = torch.nn.ModuleList()
        self.mode = OperationMode.infer

        n_half = n_group // 2

        # Set up layers with the right sizes based on how many dimensions
        # have been output already
        n_remaining_channels = n_group
        for k in range(n_flows):
            if k % self.n_early_every == 0 and k > 0:
                n_half = n_half - int(self.n_early_size / 2)
                n_remaining_channels = n_remaining_channels - self.n_early_size
            self.convinv.append(Invertible1x1Conv(n_remaining_channels))
            self.wavenet.append(
                WaveNet(
                    n_half,
                    n_mel_channels * n_group,
                    n_layers=n_wn_layers,
                    n_channels=n_wn_channels,
                    kernel_size=wn_kernel_size,
                ))
        self.n_remaining_channels = n_remaining_channels
        self.removed_weightnorm = False
Beispiel #2
0
    def __init__(
        self,
        n_mel_channels: int,
        n_flows: int,
        n_group: int,
        n_wn_channels: int,
        n_wn_layers: int,
        wn_kernel_size: int,
        upsample_factor: int,
    ):
        """
        UniGlow module
        Args:
            n_mel_channels (int): Number of mel channels to output.
            n_flows (int): Number of flow layers
            n_group (int): Number of groups to respace the inputs
            n_early_every (int): Every n_early_every layers, n_early_size gets skip connected to the output
            n_early_size (int): The size of the chunk to be skip connected
            n_wn_channels (int): Number of channels for the non-invertible wavenet transformation
            n_wn_layers (int): Number of layers for the non-invertible wavenet transformation
            wn_kernel_size (int): Kernel size for the non-invertible wavenet transformation
        """
        super().__init__()

        assert n_group % 2 == 0
        self.n_flows = n_flows
        self.n_group = n_group
        n_half = int(n_group / 2)

        self.conv = Invertible1x1Conv(n_group)
        self.wn = WaveNet(n_half, n_mel_channels, n_wn_layers, n_wn_channels, wn_kernel_size)
        self.upsample_factor = upsample_factor