Beispiel #1
0
 def output_types(self):
     return {
         "z": NeuralType(('B', 'D', 'T'), NormalDistributionSamplesType()),
         "y_m": NeuralType(('B', 'D', 'T'), NormalDistributionMeanType()),
         "y_logs": NeuralType(('B', 'D', 'T'), NormalDistributionLogVarianceType()),
         "logdet": NeuralType(('B'), LogDeterminantType()),
         "log_durs_predicted": NeuralType(('B', 'T'), TokenLogDurationType()),
         "log_durs_extracted": NeuralType(('B', 'T'), TokenLogDurationType()),
         "spect_lengths": NeuralType(('B'), LengthsType()),
         "attn": NeuralType(('B', 'T', 'T'), SequenceToSequenceAlignmentType()),
     }
Beispiel #2
0
    def _prepare_for_export(self, **kwargs):
        super()._prepare_for_export(**kwargs)

        # Define input_types and output_types as required by export()
        self._input_types = {
            "text": NeuralType(('B', 'T_text'), TokenIndex()),
            "pitch": NeuralType(('B', 'T_text'), RegressionValuesType()),
            "pace": NeuralType(('B', 'T_text'), optional=True),
            "volume": NeuralType(('B', 'T_text')),
            "speaker": NeuralType(('B'), Index()),
        }
        self._output_types = {
            "spect":
            NeuralType(('B', 'D', 'T_spec'), MelSpectrogramType()),
            "num_frames":
            NeuralType(('B'), TokenDurationType()),
            "durs_predicted":
            NeuralType(('B', 'T_text'), TokenDurationType()),
            "log_durs_predicted":
            NeuralType(('B', 'T_text'), TokenLogDurationType()),
            "pitch_predicted":
            NeuralType(('B', 'T_text'), RegressionValuesType()),
            "volume_aligned":
            NeuralType(('B', 'T_spec'), RegressionValuesType()),
        }
Beispiel #3
0
 def input_types(self):
     return {
         "log_duration_pred": NeuralType(('B', 'T'),
                                         TokenLogDurationType()),
         "duration_target": NeuralType(('B', 'T'), TokenDurationType()),
         "mask": NeuralType(('B', 'T', 'D'), MaskType()),
     }
Beispiel #4
0
 def output_types(self):
     return {
         "x_m": NeuralType(('B', 'D', 'T'), NormalDistributionMeanType()),
         "x_logs": NeuralType(('B', 'D', 'T'), NormalDistributionLogVarianceType()),
         "logw": NeuralType(('B', 'T'), TokenLogDurationType()),
         "x_mask": NeuralType(('B', 'D', 'T'), MaskType()),
     }
Beispiel #5
0
 def input_types(self):
     return {
         "log_durs_predicted": NeuralType(('B', 'T'),
                                          TokenLogDurationType()),
         "durs_tgt": NeuralType(('B', 'T'), TokenDurationType()),
         "len": NeuralType(('B'), LengthsType()),
     }
Beispiel #6
0
 def input_types(self):
     return {
         "log_durs_predicted": NeuralType(('B', 'T'),
                                          TokenLogDurationType()),
         "pitch_predicted": NeuralType(('B', 'T'), RegressionValuesType()),
         "durs_tgt": NeuralType(('B', 'T'), TokenDurationType()),
         "dur_lens": NeuralType(('B'), LengthsType()),
         "pitch_tgt": NeuralType(('B', 'T'), RegressionValuesType()),
     }
Beispiel #7
0
 def output_types(self):
     return {
         "spect": NeuralType(('B', 'D', 'T'), MelSpectrogramType()),
         "spect_lens": NeuralType(('B'), SequenceToSequenceAlignmentType()),
         "spect_mask": NeuralType(('B', 'D', 'T'), MaskType()),
         "durs_predicted": NeuralType(('B', 'T'), TokenDurationType()),
         "log_durs_predicted": NeuralType(('B', 'T'),
                                          TokenLogDurationType()),
         "pitch_predicted": NeuralType(('B', 'T'), RegressionValuesType()),
     }
Beispiel #8
0
 def output_types(self):
     return {
         "spect": NeuralType(('B', 'D', 'T_spec'), MelSpectrogramType()),
         "num_frames": NeuralType(('B'), TokenDurationType()),
         "durs_predicted": NeuralType(('B', 'T_text'), TokenDurationType()),
         "log_durs_predicted": NeuralType(('B', 'T_text'), TokenLogDurationType()),
         "pitch_predicted": NeuralType(('B', 'T_text'), RegressionValuesType()),
         "attn_soft": NeuralType(('B', 'S', 'T_spec', 'T_text'), ProbsType()),
         "attn_logprob": NeuralType(('B', 'S', 'T_spec', 'T_text'), LogprobsType()),
         "attn_hard": NeuralType(('B', 'S', 'T_spec', 'T_text'), ProbsType()),
         "attn_hard_dur": NeuralType(('B', 'T_text'), TokenDurationType()),
         "pitch": NeuralType(('B', 'T_audio'), RegressionValuesType()),
     }
Beispiel #9
0
class FastSpeech2HifiGanE2EModel(TextToWaveform):
    """An end-to-end speech synthesis model based on FastSpeech2 and HiFiGan that converts strings to audio without
    using the intermediate mel spectrogram representation."""
    def __init__(self, cfg: DictConfig, trainer: 'Trainer' = None):
        if isinstance(cfg, dict):
            cfg = OmegaConf.create(cfg)
        super().__init__(cfg=cfg, trainer=trainer)

        self.audio_to_melspec_precessor = instantiate(cfg.preprocessor)
        self.encoder = instantiate(cfg.encoder)
        self.variance_adapter = instantiate(cfg.variance_adaptor)

        self.generator = instantiate(cfg.generator)
        self.multiperioddisc = MultiPeriodDiscriminator()
        self.multiscaledisc = MultiScaleDiscriminator()

        self.melspec_fn = instantiate(cfg.preprocessor,
                                      highfreq=None,
                                      use_grads=True)
        self.mel_val_loss = L1MelLoss()
        self.durationloss = DurationLoss()
        self.feat_matching_loss = FeatureMatchingLoss()
        self.disc_loss = DiscriminatorLoss()
        self.gen_loss = GeneratorLoss()
        self.mseloss = torch.nn.MSELoss()

        self.energy = cfg.add_energy_predictor
        self.pitch = cfg.add_pitch_predictor
        self.mel_loss_coeff = cfg.mel_loss_coeff
        self.pitch_loss_coeff = cfg.pitch_loss_coeff
        self.energy_loss_coeff = cfg.energy_loss_coeff
        self.splice_length = cfg.splice_length

        self.use_energy_pred = False
        self.use_pitch_pred = False
        self.log_train_images = False
        self.logged_real_samples = False
        self._tb_logger = None
        self.sample_rate = cfg.sample_rate
        self.hop_size = cfg.hop_size

        # Parser and mappings are used for inference only.
        self.parser = parsers.make_parser(name='en')
        if 'mappings_filepath' in cfg:
            mappings_filepath = cfg.get('mappings_filepath')
        else:
            logging.error(
                "ERROR: You must specify a mappings.json file in the config file under model.mappings_filepath."
            )
        mappings_filepath = self.register_artifact('mappings_filepath',
                                                   mappings_filepath)
        with open(mappings_filepath, 'r') as f:
            mappings = json.load(f)
            self.word2phones = mappings['word2phones']
            self.phone2idx = mappings['phone2idx']

    @property
    def tb_logger(self):
        if self._tb_logger is None:
            if self.logger is None and self.logger.experiment is None:
                return None
            tb_logger = self.logger.experiment
            if isinstance(self.logger, LoggerCollection):
                for logger in self.logger:
                    if isinstance(logger, TensorBoardLogger):
                        tb_logger = logger.experiment
                        break
            self._tb_logger = tb_logger
        return self._tb_logger

    def configure_optimizers(self):
        gen_params = chain(
            self.encoder.parameters(),
            self.generator.parameters(),
            self.variance_adapter.parameters(),
        )
        disc_params = chain(self.multiscaledisc.parameters(),
                            self.multiperioddisc.parameters())
        opt1 = torch.optim.AdamW(disc_params, lr=self._cfg.lr)
        opt2 = torch.optim.AdamW(gen_params, lr=self._cfg.lr)
        num_procs = self._trainer.num_gpus * self._trainer.num_nodes
        num_samples = len(self._train_dl.dataset)
        batch_size = self._train_dl.batch_size
        iter_per_epoch = np.ceil(num_samples / (num_procs * batch_size))
        max_steps = iter_per_epoch * self._trainer.max_epochs
        logging.info(f"MAX STEPS: {max_steps}")
        sch1 = NoamAnnealing(opt1,
                             d_model=256,
                             warmup_steps=3000,
                             max_steps=max_steps,
                             min_lr=1e-5)
        sch1_dict = {
            'scheduler': sch1,
            'interval': 'step',
        }
        sch2 = NoamAnnealing(opt2,
                             d_model=256,
                             warmup_steps=3000,
                             max_steps=max_steps,
                             min_lr=1e-5)
        sch2_dict = {
            'scheduler': sch2,
            'interval': 'step',
        }
        return [opt1, opt2], [sch1_dict, sch2_dict]

    @typecheck(
        input_types={
            "text":
            NeuralType(('B', 'T'), TokenIndex()),
            "text_length":
            NeuralType(('B'), LengthsType()),
            "splice":
            NeuralType(optional=True),
            "spec_len":
            NeuralType(('B'), LengthsType(), optional=True),
            "durations":
            NeuralType(('B', 'T'), TokenDurationType(), optional=True),
            "pitch":
            NeuralType(('B', 'T'), RegressionValuesType(), optional=True),
            "energies":
            NeuralType(('B', 'T'), RegressionValuesType(), optional=True),
        },
        output_types={
            "audio": NeuralType(('B', 'S', 'T'), MelSpectrogramType()),
            "splices": NeuralType(),
            "log_dur_preds": NeuralType(('B', 'T'), TokenLogDurationType()),
            "pitch_preds": NeuralType(('B', 'T'), RegressionValuesType()),
            "energy_preds": NeuralType(('B', 'T'), RegressionValuesType()),
            "encoded_text_mask": NeuralType(('B', 'T', 'D'), MaskType()),
        },
    )
    def forward(self,
                *,
                text,
                text_length,
                splice=True,
                durations=None,
                pitch=None,
                energies=None,
                spec_len=None):
        encoded_text, encoded_text_mask = self.encoder(text=text,
                                                       text_length=text_length)

        context, log_dur_preds, pitch_preds, energy_preds, spec_len = self.variance_adapter(
            x=encoded_text,
            x_len=text_length,
            dur_target=durations,
            pitch_target=pitch,
            energy_target=energies,
            spec_len=spec_len,
        )

        gen_in = context
        splices = None
        if splice:
            # Splice generated spec
            output = []
            splices = []
            for i, sample in enumerate(context):
                start = np.random.randint(
                    low=0,
                    high=min(int(sample.size(0)), int(spec_len[i])) -
                    self.splice_length)
                output.append(sample[start:start + self.splice_length, :])
                splices.append(start)
            gen_in = torch.stack(output)

        output = self.generator(x=gen_in.transpose(1, 2))

        return output, splices, log_dur_preds, pitch_preds, energy_preds, encoded_text_mask

    def training_step(self, batch, batch_idx, optimizer_idx):
        f, fl, t, tl, durations, pitch, energies = batch
        spec, spec_len = self.audio_to_melspec_precessor(f, fl)

        # train discriminator
        if optimizer_idx == 0:
            with torch.no_grad():
                audio_pred, splices, _, _, _, _ = self(
                    spec=spec,
                    spec_len=spec_len,
                    text=t,
                    text_length=tl,
                    durations=durations,
                    pitch=pitch if not self.use_pitch_pred else None,
                    energies=energies if not self.use_energy_pred else None,
                )
                real_audio = []
                for i, splice in enumerate(splices):
                    real_audio.append(
                        f[i, splice *
                          self.hop_size:(splice + self.splice_length) *
                          self.hop_size])
                real_audio = torch.stack(real_audio).unsqueeze(1)

            real_score_mp, gen_score_mp, _, _ = self.multiperioddisc(
                real_audio, audio_pred)
            real_score_ms, gen_score_ms, _, _ = self.multiscaledisc(
                real_audio, audio_pred)

            loss_mp, loss_mp_real, _ = self.disc_loss(real_score_mp,
                                                      gen_score_mp)
            loss_ms, loss_ms_real, _ = self.disc_loss(real_score_ms,
                                                      gen_score_ms)
            loss_mp /= len(loss_mp_real)
            loss_ms /= len(loss_ms_real)
            loss_disc = loss_mp + loss_ms

            self.log("loss_discriminator", loss_disc, prog_bar=True)
            self.log("loss_discriminator_ms", loss_ms)
            self.log("loss_discriminator_mp", loss_mp)
            return loss_disc

        # train generator
        elif optimizer_idx == 1:
            audio_pred, splices, log_dur_preds, pitch_preds, energy_preds, encoded_text_mask = self(
                spec=spec,
                spec_len=spec_len,
                text=t,
                text_length=tl,
                durations=durations,
                pitch=pitch if not self.use_pitch_pred else None,
                energies=energies if not self.use_energy_pred else None,
            )
            real_audio = []
            for i, splice in enumerate(splices):
                real_audio.append(
                    f[i, splice * self.hop_size:(splice + self.splice_length) *
                      self.hop_size])
            real_audio = torch.stack(real_audio).unsqueeze(1)

            # Do HiFiGAN generator loss
            audio_length = torch.tensor([
                self.splice_length * self.hop_size
                for _ in range(real_audio.shape[0])
            ]).to(real_audio.device)
            real_spliced_spec, _ = self.melspec_fn(real_audio.squeeze(),
                                                   seq_len=audio_length)
            pred_spliced_spec, _ = self.melspec_fn(audio_pred.squeeze(),
                                                   seq_len=audio_length)
            loss_mel = torch.nn.functional.l1_loss(real_spliced_spec,
                                                   pred_spliced_spec)
            loss_mel *= self.mel_loss_coeff
            _, gen_score_mp, real_feat_mp, gen_feat_mp = self.multiperioddisc(
                real_audio, audio_pred)
            _, gen_score_ms, real_feat_ms, gen_feat_ms = self.multiscaledisc(
                real_audio, audio_pred)
            loss_gen_mp, list_loss_gen_mp = self.gen_loss(gen_score_mp)
            loss_gen_ms, list_loss_gen_ms = self.gen_loss(gen_score_ms)
            loss_gen_mp /= len(list_loss_gen_mp)
            loss_gen_ms /= len(list_loss_gen_ms)
            total_loss = loss_gen_mp + loss_gen_ms + loss_mel
            loss_feat_mp = self.feat_matching_loss(real_feat_mp, gen_feat_mp)
            loss_feat_ms = self.feat_matching_loss(real_feat_ms, gen_feat_ms)
            total_loss += loss_feat_mp + loss_feat_ms
            self.log(name="loss_gen_disc_feat",
                     value=loss_feat_mp + loss_feat_ms)
            self.log(name="loss_gen_disc_feat_ms", value=loss_feat_ms)
            self.log(name="loss_gen_disc_feat_mp", value=loss_feat_mp)

            self.log(name="loss_gen_mel", value=loss_mel)
            self.log(name="loss_gen_disc", value=loss_gen_mp + loss_gen_ms)
            self.log(name="loss_gen_disc_mp", value=loss_gen_mp)
            self.log(name="loss_gen_disc_ms", value=loss_gen_ms)

            dur_loss = self.durationloss(log_duration_pred=log_dur_preds,
                                         duration_target=durations.float(),
                                         mask=encoded_text_mask)
            self.log(name="loss_gen_duration", value=dur_loss)
            total_loss += dur_loss
            if self.pitch:
                pitch_loss = self.mseloss(
                    pitch_preds, pitch.float()) * self.pitch_loss_coeff
                total_loss += pitch_loss
                self.log(name="loss_gen_pitch", value=pitch_loss)
            if self.energy:
                energy_loss = self.mseloss(energy_preds,
                                           energies) * self.energy_loss_coeff
                total_loss += energy_loss
                self.log(name="loss_gen_energy", value=energy_loss)

            # Log images to tensorboard
            if self.log_train_images:
                self.log_train_images = False
                if self.logger is not None and self.logger.experiment is not None:
                    self.tb_logger.add_image(
                        "train_mel_target",
                        plot_spectrogram_to_numpy(
                            real_spliced_spec[0].data.cpu().numpy()),
                        self.global_step,
                        dataformats="HWC",
                    )
                    spec_predict = pred_spliced_spec[0].data.cpu().numpy()
                    self.tb_logger.add_image(
                        "train_mel_predicted",
                        plot_spectrogram_to_numpy(spec_predict),
                        self.global_step,
                        dataformats="HWC",
                    )
            self.log(name="loss_gen", prog_bar=True, value=total_loss)
            return total_loss

    def validation_step(self, batch, batch_idx):
        f, fl, t, tl, _, _, _ = batch
        spec, spec_len = self.audio_to_melspec_precessor(f, fl)
        audio_pred, _, _, _, _, _ = self(spec=spec,
                                         spec_len=spec_len,
                                         text=t,
                                         text_length=tl,
                                         splice=False)
        audio_pred.squeeze_()
        pred_spec, _ = self.melspec_fn(audio_pred, seq_len=spec_len)
        loss = self.mel_val_loss(spec_pred=pred_spec,
                                 spec_target=spec,
                                 spec_target_len=spec_len,
                                 pad_value=-11.52)

        return {
            "val_loss": loss,
            "audio_target": f.squeeze() if batch_idx == 0 else None,
            "audio_pred": audio_pred if batch_idx == 0 else None,
        }

    def on_train_epoch_start(self):
        # Switch to using energy predictions after 50% of training
        if not self.use_energy_pred and self.current_epoch >= np.ceil(
                0.5 * self._trainer.max_epochs):
            logging.info(
                f"Using energy predictions after epoch: {self.current_epoch}")
            self.use_energy_pred = True

        # Switch to using pitch predictions after 62.5% of training
        if not self.use_pitch_pred and self.current_epoch >= np.ceil(
                0.625 * self._trainer.max_epochs):
            logging.info(
                f"Using pitch predictions after epoch: {self.current_epoch}")
            self.use_pitch_pred = True

    def validation_epoch_end(self, outputs):
        if self.tb_logger is not None:
            _, audio_target, audio_predict = outputs[0].values()
            if not self.logged_real_samples:
                self.tb_logger.add_audio("val_target",
                                         audio_target[0].data.cpu(),
                                         self.global_step, self.sample_rate)
                self.logged_real_samples = True
            audio_predict = audio_predict[0].data.cpu()
            self.tb_logger.add_audio("val_pred", audio_predict,
                                     self.global_step, self.sample_rate)
        avg_loss = torch.stack([
            x['val_loss'] for x in outputs
        ]).mean()  # This reduces across batches, not workers!
        self.log('val_loss', avg_loss, sync_dist=True)

        self.log_train_images = True

    def __setup_dataloader_from_config(self,
                                       cfg,
                                       shuffle_should_be: bool = True,
                                       name: str = "train"):
        if "dataset" not in cfg or not isinstance(cfg.dataset, DictConfig):
            raise ValueError(f"No dataset for {name}")
        if "dataloader_params" not in cfg or not isinstance(
                cfg.dataloader_params, DictConfig):
            raise ValueError(f"No dataloder_params for {name}")
        if shuffle_should_be:
            if 'shuffle' not in cfg.dataloader_params:
                logging.warning(
                    f"Shuffle should be set to True for {self}'s {name} dataloader but was not found in its "
                    "config. Manually setting to True")
                with open_dict(cfg.dataloader_params):
                    cfg.dataloader_params.shuffle = True
            elif not cfg.dataloader_params.shuffle:
                logging.error(
                    f"The {name} dataloader for {self} has shuffle set to False!!!"
                )
        elif not shuffle_should_be and cfg.dataloader_params.shuffle:
            logging.error(
                f"The {name} dataloader for {self} has shuffle set to True!!!")

        dataset = instantiate(cfg.dataset)
        return torch.utils.data.DataLoader(dataset,
                                           collate_fn=dataset.collate_fn,
                                           **cfg.dataloader_params)

    def setup_training_data(self, cfg):
        self._train_dl = self.__setup_dataloader_from_config(cfg)

    def setup_validation_data(self, cfg):
        self._validation_dl = self.__setup_dataloader_from_config(
            cfg, shuffle_should_be=False, name="validation")

    def parse(self,
              str_input: str,
              additional_word2phones=None) -> torch.tensor:
        """
        Parses text input and converts them to phoneme indices.

        str_input (str): The input text to be converted.
        additional_word2phones (dict): Optional dictionary mapping words to phonemes for updating the model's
            word2phones.  This will not overwrite the existing dictionary, just update it with OOV or new mappings.
            Defaults to None, which will keep the existing mapping.
        """
        # Update model's word2phones if applicable
        if additional_word2phones is not None:
            self.word2phones.update(additional_word2phones)

        # Convert text -> normalized text -> list of phones per word -> indices
        if str_input[-1] not in [".", "!", "?"]:
            str_input = str_input + "."
        norm_text = re.findall(r"""[\w']+|[.,!?;"]""",
                               self.parser._normalize(str_input))

        try:
            phones = [self.word2phones[t] for t in norm_text]
        except KeyError as error:
            logging.error(
                f"ERROR: The following word in the input is not in the model's dictionary and could not be converted"
                f" to phonemes: ({error}).\n"
                f"You can pass in an `additional_word2phones` dictionary with a conversion for"
                f" this word, e.g. {{'{error}': \['phone1', 'phone2', ...\]}} to update the model's mapping."
            )
            raise

        tokens = []
        for phone_list in phones:
            inds = [self.phone2idx[p] for p in phone_list]
            tokens += inds

        x = torch.tensor(tokens).unsqueeze_(0).long().to(self.device)
        return x

    def convert_text_to_waveform(self, *, tokens):
        """
        Accepts tokens returned from self.parse() and returns a list of tensors. Note: The tensors in the list can have
        different lengths.
        """
        self.eval()
        token_len = torch.tensor([len(i) for i in tokens]).to(self.device)
        audio, _, log_dur_pred, _, _, _ = self(text=tokens,
                                               text_length=token_len,
                                               splice=False)
        audio = audio.squeeze(1)
        durations = torch.sum(torch.exp(log_dur_pred) - 1, 1).to(torch.int)
        audio_list = []
        for i, sample in enumerate(audio):
            audio_list.append(sample[:durations[i] * self.hop_size])

        return audio_list

    @classmethod
    def list_available_models(cls) -> 'List[PretrainedModelInfo]':
        """
        This method returns a list of pre-trained model which can be instantiated directly from NVIDIA's NGC cloud.
        Returns:
            List of available pre-trained models.
        """
        list_of_models = []
        model = PretrainedModelInfo(
            pretrained_model_name="tts_en_e2e_fastspeech2hifigan",
            location=
            "https://api.ngc.nvidia.com/v2/models/nvidia/nemo/tts_en_e2e_fastspeech2hifigan/versions/1.0.0/files/tts_en_e2e_fastspeech2hifigan.nemo",
            description=
            "This model is trained on LJSpeech sampled at 22050Hz with and can be used to generate female English voices with an American accent.",
            class_=cls,
        )
        list_of_models.append(model)

        return list_of_models
Beispiel #10
0
class MixerTTSModel(SpectrogramGenerator, Exportable):
    """MixerTTS pipeline."""
    def __init__(self, cfg: DictConfig, trainer: 'Trainer' = None):
        super().__init__(cfg=cfg, trainer=trainer)
        cfg = self._cfg
        if "text_normalizer" in cfg.train_ds.dataset:
            self.normalizer = instantiate(cfg.train_ds.dataset.text_normalizer)
            self.text_normalizer_call = self.normalizer.normalize
            self.text_normalizer_call_args = {}
            if cfg.train_ds.dataset.get("text_normalizer_call_args",
                                        None) is not None:
                self.text_normalizer_call_args = cfg.train_ds.dataset.text_normalizer_call_args

        self.tokenizer = instantiate(cfg.train_ds.dataset.text_tokenizer)
        num_tokens = len(self.tokenizer.tokens)
        self.tokenizer_pad = self.tokenizer.pad
        self.tokenizer_unk = self.tokenizer.oov

        self.pitch_loss_scale = cfg.pitch_loss_scale
        self.durs_loss_scale = cfg.durs_loss_scale
        self.mel_loss_scale = cfg.mel_loss_scale

        self.aligner = instantiate(cfg.alignment_module)
        self.forward_sum_loss = ForwardSumLoss()
        self.bin_loss = BinLoss()
        self.add_bin_loss = False
        self.bin_loss_scale = 0.0
        self.bin_loss_start_ratio = cfg.bin_loss_start_ratio
        self.bin_loss_warmup_epochs = cfg.bin_loss_warmup_epochs

        self.cond_on_lm_embeddings = cfg.get("cond_on_lm_embeddings", False)

        if self.cond_on_lm_embeddings:
            self.lm_padding_value = (self._train_dl.dataset.lm_padding_value
                                     if self._train_dl is not None else
                                     self._get_lm_padding_value(
                                         cfg.train_ds.dataset.lm_model))
            self.lm_embeddings = self._get_lm_embeddings(
                cfg.train_ds.dataset.lm_model)
            self.lm_embeddings.weight.requires_grad = False

            self.self_attention_module = instantiate(
                cfg.self_attention_module,
                n_lm_tokens_channels=self.lm_embeddings.weight.shape[1])

        self.encoder = instantiate(cfg.encoder,
                                   num_tokens=num_tokens,
                                   padding_idx=self.tokenizer_pad)
        self.symbol_emb = self.encoder.to_embed

        self.duration_predictor = instantiate(cfg.duration_predictor)

        self.pitch_mean, self.pitch_std = float(cfg.pitch_mean), float(
            cfg.pitch_std)
        self.pitch_predictor = instantiate(cfg.pitch_predictor)
        self.pitch_emb = instantiate(cfg.pitch_emb)

        self.preprocessor = instantiate(cfg.preprocessor)

        self.decoder = instantiate(cfg.decoder)
        self.proj = nn.Linear(self.decoder.d_model, cfg.n_mel_channels)

    def _get_lm_model_tokenizer(self, lm_model="albert"):
        if getattr(self, "_lm_model_tokenizer", None) is not None:
            return self._lm_model_tokenizer

        if self._train_dl is not None and self._train_dl.dataset is not None:
            self._lm_model_tokenizer = self._train_dl.dataset.lm_model_tokenizer

        if lm_model == "albert":
            self._lm_model_tokenizer = AlbertTokenizer.from_pretrained(
                'albert-base-v2')
        else:
            raise NotImplementedError(
                f"{lm_model} lm model is not supported. Only albert is supported at this moment."
            )

        return self._lm_model_tokenizer

    def _get_lm_embeddings(self, lm_model="albert"):
        if lm_model == "albert":
            return transformers.AlbertModel.from_pretrained(
                'albert-base-v2').embeddings.word_embeddings
        else:
            raise NotImplementedError(
                f"{lm_model} lm model is not supported. Only albert is supported at this moment."
            )

    def _get_lm_padding_value(self, lm_model="albert"):
        if lm_model == "albert":
            return transformers.AlbertTokenizer.from_pretrained(
                'albert-base-v2')._convert_token_to_id('<pad>')
        else:
            raise NotImplementedError(
                f"{lm_model} lm model is not supported. Only albert is supported at this moment."
            )

    def _metrics(
        self,
        true_durs,
        true_text_len,
        pred_durs,
        true_pitch,
        pred_pitch,
        true_spect=None,
        pred_spect=None,
        true_spect_len=None,
        attn_logprob=None,
        attn_soft=None,
        attn_hard=None,
        attn_hard_dur=None,
    ):
        text_mask = get_mask_from_lengths(true_text_len)
        mel_mask = get_mask_from_lengths(true_spect_len)
        loss = 0.0

        # dur loss and metrics
        durs_loss = F.mse_loss(pred_durs, (true_durs + 1).float().log(),
                               reduction='none')
        durs_loss = durs_loss * text_mask.float()
        durs_loss = durs_loss.sum() / text_mask.sum()

        durs_pred = pred_durs.exp() - 1
        durs_pred = torch.clamp_min(durs_pred, min=0)
        durs_pred = durs_pred.round().long()

        acc = ((true_durs == durs_pred) *
               text_mask).sum().float() / text_mask.sum() * 100
        acc_dist_1 = (((true_durs - durs_pred).abs() <= 1) *
                      text_mask).sum().float() / text_mask.sum() * 100
        acc_dist_3 = (((true_durs - durs_pred).abs() <= 3) *
                      text_mask).sum().float() / text_mask.sum() * 100

        pred_spect = pred_spect.transpose(1, 2)

        # mel loss
        mel_loss = F.mse_loss(pred_spect, true_spect,
                              reduction='none').mean(dim=-2)
        mel_loss = mel_loss * mel_mask.float()
        mel_loss = mel_loss.sum() / mel_mask.sum()

        loss = loss + self.durs_loss_scale * durs_loss + self.mel_loss_scale * mel_loss

        # aligner loss
        bin_loss, ctc_loss = None, None
        ctc_loss = self.forward_sum_loss(attn_logprob=attn_logprob,
                                         in_lens=true_text_len,
                                         out_lens=true_spect_len)
        loss = loss + ctc_loss
        if self.add_bin_loss:
            bin_loss = self.bin_loss(hard_attention=attn_hard,
                                     soft_attention=attn_soft)
            loss = loss + self.bin_loss_scale * bin_loss
        true_avg_pitch = average_pitch(true_pitch.unsqueeze(1),
                                       attn_hard_dur).squeeze(1)

        # pitch loss
        pitch_loss = F.mse_loss(pred_pitch, true_avg_pitch,
                                reduction='none')  # noqa
        pitch_loss = (pitch_loss * text_mask).sum() / text_mask.sum()

        loss = loss + self.pitch_loss_scale * pitch_loss

        return loss, durs_loss, acc, acc_dist_1, acc_dist_3, pitch_loss, mel_loss, ctc_loss, bin_loss

    @torch.jit.unused
    def run_aligner(self, text, text_len, text_mask, spect, spect_len,
                    attn_prior):
        text_emb = self.symbol_emb(text)
        attn_soft, attn_logprob = self.aligner(
            spect,
            text_emb.permute(0, 2, 1),
            mask=text_mask == 0,
            attn_prior=attn_prior,
        )
        attn_hard = binarize_attention_parallel(attn_soft, text_len, spect_len)
        attn_hard_dur = attn_hard.sum(2)[:, 0, :]
        assert torch.all(torch.eq(attn_hard_dur.sum(dim=1), spect_len))
        return attn_soft, attn_logprob, attn_hard, attn_hard_dur

    @typecheck(
        input_types={
            "text":
            NeuralType(('B', 'T_text'), TokenIndex()),
            "text_len":
            NeuralType(('B', ), LengthsType()),
            "pitch":
            NeuralType(('B', 'T_audio'), RegressionValuesType(),
                       optional=True),
            "spect":
            NeuralType(('B', 'D', 'T_spec'),
                       MelSpectrogramType(),
                       optional=True),
            "spect_len":
            NeuralType(('B', ), LengthsType(), optional=True),
            "attn_prior":
            NeuralType(('B', 'T_spec', 'T_text'), ProbsType(), optional=True),
            "lm_tokens":
            NeuralType(('B', 'T_lm_tokens'), TokenIndex(), optional=True),
        },
        output_types={
            "pred_spect":
            NeuralType(('B', 'D', 'T_spec'), MelSpectrogramType()),
            "durs_predicted":
            NeuralType(('B', 'T_text'), TokenDurationType()),
            "log_durs_predicted":
            NeuralType(('B', 'T_text'), TokenLogDurationType()),
            "pitch_predicted":
            NeuralType(('B', 'T_text'), RegressionValuesType()),
            "attn_soft":
            NeuralType(('B', 'S', 'T_spec', 'T_text'), ProbsType()),
            "attn_logprob":
            NeuralType(('B', 'S', 'T_spec', 'T_text'), LogprobsType()),
            "attn_hard":
            NeuralType(('B', 'S', 'T_spec', 'T_text'), ProbsType()),
            "attn_hard_dur":
            NeuralType(('B', 'T_text'), TokenDurationType()),
        },
    )
    def forward(self,
                text,
                text_len,
                pitch=None,
                spect=None,
                spect_len=None,
                attn_prior=None,
                lm_tokens=None):
        if self.training:
            assert pitch is not None

        text_mask = get_mask_from_lengths(text_len).unsqueeze(2)

        enc_out, enc_mask = self.encoder(text, text_mask)

        # aligner
        attn_soft, attn_logprob, attn_hard, attn_hard_dur = None, None, None, None
        if spect is not None:
            attn_soft, attn_logprob, attn_hard, attn_hard_dur = self.run_aligner(
                text, text_len, text_mask, spect, spect_len, attn_prior)

        if self.cond_on_lm_embeddings:
            lm_emb = self.lm_embeddings(lm_tokens)
            lm_features = self.self_attention_module(
                enc_out,
                lm_emb,
                lm_emb,
                q_mask=enc_mask.squeeze(2),
                kv_mask=lm_tokens != self.lm_padding_value)

        # duration predictor
        log_durs_predicted = self.duration_predictor(enc_out, enc_mask)
        durs_predicted = torch.clamp(log_durs_predicted.exp() - 1, 0)

        # pitch predictor
        pitch_predicted = self.pitch_predictor(enc_out, enc_mask)

        # avg pitch, add pitch_emb
        if not self.training:
            if pitch is not None:
                pitch = average_pitch(pitch.unsqueeze(1),
                                      attn_hard_dur).squeeze(1)
                pitch_emb = self.pitch_emb(pitch.unsqueeze(1))
            else:
                pitch_emb = self.pitch_emb(pitch_predicted.unsqueeze(1))
        else:
            pitch = average_pitch(pitch.unsqueeze(1), attn_hard_dur).squeeze(1)
            pitch_emb = self.pitch_emb(pitch.unsqueeze(1))

        enc_out = enc_out + pitch_emb.transpose(1, 2)

        if self.cond_on_lm_embeddings:
            enc_out = enc_out + lm_features

        # regulate length
        len_regulated_enc_out, dec_lens = regulate_len(attn_hard_dur, enc_out)

        dec_out, dec_lens = self.decoder(
            len_regulated_enc_out,
            get_mask_from_lengths(dec_lens).unsqueeze(2))
        pred_spect = self.proj(dec_out)

        return (
            pred_spect,
            durs_predicted,
            log_durs_predicted,
            pitch_predicted,
            attn_soft,
            attn_logprob,
            attn_hard,
            attn_hard_dur,
        )

    def infer(
        self,
        text,
        text_len=None,
        text_mask=None,
        spect=None,
        spect_len=None,
        attn_prior=None,
        use_gt_durs=False,
        lm_tokens=None,
        pitch=None,
    ):
        if text_mask is None:
            text_mask = get_mask_from_lengths(text_len).unsqueeze(2)

        enc_out, enc_mask = self.encoder(text, text_mask)

        # aligner
        attn_hard_dur = None
        if use_gt_durs:
            attn_soft, attn_logprob, attn_hard, attn_hard_dur = self.run_aligner(
                text, text_len, text_mask, spect, spect_len, attn_prior)

        if self.cond_on_lm_embeddings:
            lm_emb = self.lm_embeddings(lm_tokens)
            lm_features = self.self_attention_module(
                enc_out,
                lm_emb,
                lm_emb,
                q_mask=enc_mask.squeeze(2),
                kv_mask=lm_tokens != self.lm_padding_value)

        # duration predictor
        log_durs_predicted = self.duration_predictor(enc_out, enc_mask)
        durs_predicted = torch.clamp(log_durs_predicted.exp() - 1, 0)

        # avg pitch, pitch predictor
        if use_gt_durs and pitch is not None:
            pitch = average_pitch(pitch.unsqueeze(1), attn_hard_dur).squeeze(1)
            pitch_emb = self.pitch_emb(pitch.unsqueeze(1))
        else:
            pitch_predicted = self.pitch_predictor(enc_out, enc_mask)
            pitch_emb = self.pitch_emb(pitch_predicted.unsqueeze(1))

        # add pitch emb
        enc_out = enc_out + pitch_emb.transpose(1, 2)

        if self.cond_on_lm_embeddings:
            enc_out = enc_out + lm_features

        if use_gt_durs:
            if attn_hard_dur is not None:
                len_regulated_enc_out, dec_lens = regulate_len(
                    attn_hard_dur, enc_out)
            else:
                raise NotImplementedError
        else:
            len_regulated_enc_out, dec_lens = regulate_len(
                durs_predicted, enc_out)

        dec_out, _ = self.decoder(len_regulated_enc_out,
                                  get_mask_from_lengths(dec_lens).unsqueeze(2))
        pred_spect = self.proj(dec_out)

        return pred_spect

    def on_train_epoch_start(self):
        bin_loss_start_epoch = np.ceil(self.bin_loss_start_ratio *
                                       self._trainer.max_epochs)

        # Add bin loss when current_epoch >= bin_start_epoch
        if not self.add_bin_loss and self.current_epoch >= bin_loss_start_epoch:
            logging.info(
                f"Using hard attentions after epoch: {self.current_epoch}")
            self.add_bin_loss = True

        if self.add_bin_loss:
            self.bin_loss_scale = min(
                (self.current_epoch - bin_loss_start_epoch) /
                self.bin_loss_warmup_epochs, 1.0)

    def training_step(self, batch, batch_idx):
        attn_prior, lm_tokens = None, None
        if self.cond_on_lm_embeddings:
            audio, audio_len, text, text_len, attn_prior, pitch, _, lm_tokens = batch
        else:
            audio, audio_len, text, text_len, attn_prior, pitch, _ = batch

        spect, spect_len = self.preprocessor(input_signal=audio,
                                             length=audio_len)

        # pitch normalization
        zero_pitch_idx = pitch == 0
        pitch = (pitch - self.pitch_mean) / self.pitch_std
        pitch[zero_pitch_idx] = 0.0

        (
            pred_spect,
            _,
            pred_log_durs,
            pred_pitch,
            attn_soft,
            attn_logprob,
            attn_hard,
            attn_hard_dur,
        ) = self(
            text=text,
            text_len=text_len,
            pitch=pitch,
            spect=spect,
            spect_len=spect_len,
            attn_prior=attn_prior,
            lm_tokens=lm_tokens,
        )

        (
            loss,
            durs_loss,
            acc,
            acc_dist_1,
            acc_dist_3,
            pitch_loss,
            mel_loss,
            ctc_loss,
            bin_loss,
        ) = self._metrics(
            pred_durs=pred_log_durs,
            pred_pitch=pred_pitch,
            true_durs=attn_hard_dur,
            true_text_len=text_len,
            true_pitch=pitch,
            true_spect=spect,
            pred_spect=pred_spect,
            true_spect_len=spect_len,
            attn_logprob=attn_logprob,
            attn_soft=attn_soft,
            attn_hard=attn_hard,
            attn_hard_dur=attn_hard_dur,
        )

        train_log = {
            'train_loss':
            loss,
            'train_durs_loss':
            durs_loss,
            'train_pitch_loss':
            torch.tensor(1.0).to(durs_loss.device)
            if pitch_loss is None else pitch_loss,
            'train_mel_loss':
            mel_loss,
            'train_durs_acc':
            acc,
            'train_durs_acc_dist_3':
            acc_dist_3,
            'train_ctc_loss':
            torch.tensor(1.0).to(durs_loss.device)
            if ctc_loss is None else ctc_loss,
            'train_bin_loss':
            torch.tensor(1.0).to(durs_loss.device)
            if bin_loss is None else bin_loss,
        }

        return {'loss': loss, 'progress_bar': train_log, 'log': train_log}

    def validation_step(self, batch, batch_idx):
        attn_prior, lm_tokens = None, None
        if self.cond_on_lm_embeddings:
            audio, audio_len, text, text_len, attn_prior, pitch, _, lm_tokens = batch
        else:
            audio, audio_len, text, text_len, attn_prior, pitch, _ = batch

        spect, spect_len = self.preprocessor(input_signal=audio,
                                             length=audio_len)

        # pitch normalization
        zero_pitch_idx = pitch == 0
        pitch = (pitch - self.pitch_mean) / self.pitch_std
        pitch[zero_pitch_idx] = 0.0

        (
            pred_spect,
            _,
            pred_log_durs,
            pred_pitch,
            attn_soft,
            attn_logprob,
            attn_hard,
            attn_hard_dur,
        ) = self(
            text=text,
            text_len=text_len,
            pitch=pitch,
            spect=spect,
            spect_len=spect_len,
            attn_prior=attn_prior,
            lm_tokens=lm_tokens,
        )

        (
            loss,
            durs_loss,
            acc,
            acc_dist_1,
            acc_dist_3,
            pitch_loss,
            mel_loss,
            ctc_loss,
            bin_loss,
        ) = self._metrics(
            pred_durs=pred_log_durs,
            pred_pitch=pred_pitch,
            true_durs=attn_hard_dur,
            true_text_len=text_len,
            true_pitch=pitch,
            true_spect=spect,
            pred_spect=pred_spect,
            true_spect_len=spect_len,
            attn_logprob=attn_logprob,
            attn_soft=attn_soft,
            attn_hard=attn_hard,
            attn_hard_dur=attn_hard_dur,
        )

        # without ground truth internal features except for durations
        pred_spect, _, pred_log_durs, pred_pitch, attn_soft, attn_logprob, attn_hard, attn_hard_dur = self(
            text=text,
            text_len=text_len,
            pitch=None,
            spect=spect,
            spect_len=spect_len,
            attn_prior=attn_prior,
            lm_tokens=lm_tokens,
        )

        *_, with_pred_features_mel_loss, _, _ = self._metrics(
            pred_durs=pred_log_durs,
            pred_pitch=pred_pitch,
            true_durs=attn_hard_dur,
            true_text_len=text_len,
            true_pitch=pitch,
            true_spect=spect,
            pred_spect=pred_spect,
            true_spect_len=spect_len,
            attn_logprob=attn_logprob,
            attn_soft=attn_soft,
            attn_hard=attn_hard,
            attn_hard_dur=attn_hard_dur,
        )

        val_log = {
            'val_loss':
            loss,
            'val_durs_loss':
            durs_loss,
            'val_pitch_loss':
            torch.tensor(1.0).to(durs_loss.device)
            if pitch_loss is None else pitch_loss,
            'val_mel_loss':
            mel_loss,
            'val_with_pred_features_mel_loss':
            with_pred_features_mel_loss,
            'val_durs_acc':
            acc,
            'val_durs_acc_dist_3':
            acc_dist_3,
            'val_ctc_loss':
            torch.tensor(1.0).to(durs_loss.device)
            if ctc_loss is None else ctc_loss,
            'val_bin_loss':
            torch.tensor(1.0).to(durs_loss.device)
            if bin_loss is None else bin_loss,
        }
        self.log_dict(val_log,
                      prog_bar=False,
                      on_epoch=True,
                      logger=True,
                      sync_dist=True)

        if batch_idx == 0 and self.current_epoch % 5 == 0 and isinstance(
                self.logger, WandbLogger):
            specs = []
            pitches = []
            for i in range(min(3, spect.shape[0])):
                specs += [
                    wandb.Image(
                        plot_spectrogram_to_numpy(
                            spect[i, :, :spect_len[i]].data.cpu().numpy()),
                        caption=f"gt mel {i}",
                    ),
                    wandb.Image(
                        plot_spectrogram_to_numpy(
                            pred_spect.transpose(
                                1, 2)[i, :, :spect_len[i]].data.cpu().numpy()),
                        caption=f"pred mel {i}",
                    ),
                ]

                pitches += [
                    wandb.Image(
                        plot_pitch_to_numpy(
                            average_pitch(pitch.unsqueeze(1),
                                          attn_hard_dur).squeeze(1)
                            [i, :text_len[i]].data.cpu().numpy(),
                            ylim_range=[-2.5, 2.5],
                        ),
                        caption=f"gt pitch {i}",
                    ),
                ]

                pitches += [
                    wandb.Image(
                        plot_pitch_to_numpy(
                            pred_pitch[i, :text_len[i]].data.cpu().numpy(),
                            ylim_range=[-2.5, 2.5]),
                        caption=f"pred pitch {i}",
                    ),
                ]

            self.logger.experiment.log({"specs": specs, "pitches": pitches})

    @typecheck(
        input_types={
            "tokens":
            NeuralType(('B', 'T_text'), TokenIndex(), optional=True),
            "tokens_len":
            NeuralType(('B'), LengthsType(), optional=True),
            "lm_tokens":
            NeuralType(('B', 'T_lm_tokens'), TokenIndex(), optional=True),
            "raw_texts": [NeuralType(optional=True)],
            "lm_model":
            NeuralType(optional=True),
        },
        output_types={
            "spect": NeuralType(('B', 'D', 'T_spec'), MelSpectrogramType()),
        },
    )
    def generate_spectrogram(
        self,
        tokens: Optional[torch.Tensor] = None,
        tokens_len: Optional[torch.Tensor] = None,
        lm_tokens: Optional[torch.Tensor] = None,
        raw_texts: Optional[List[str]] = None,
        lm_model: str = "albert",
    ):
        if tokens is not None:
            if tokens_len is None:
                # it is assumed that padding is consecutive and only at the end
                tokens_len = (tokens != self.tokenizer.pad).sum(dim=-1)
        else:
            if raw_texts is None:
                logging.error("raw_texts must be specified if tokens is None")

            t_seqs = [self.tokenizer(t) for t in raw_texts]
            tokens = torch.nn.utils.rnn.pad_sequence(
                sequences=[
                    torch.tensor(t, dtype=torch.long, device=self.device)
                    for t in t_seqs
                ],
                batch_first=True,
                padding_value=self.tokenizer.pad,
            )
            tokens_len = torch.tensor([len(t) for t in t_seqs],
                                      dtype=torch.long,
                                      device=tokens.device)

        if self.cond_on_lm_embeddings and lm_tokens is None:
            if raw_texts is None:
                logging.error(
                    "raw_texts must be specified if lm_tokens is None")

            lm_model_tokenizer = self._get_lm_model_tokenizer(lm_model)
            lm_padding_value = lm_model_tokenizer._convert_token_to_id('<pad>')
            lm_space_value = lm_model_tokenizer._convert_token_to_id('▁')

            assert isinstance(self.tokenizer,
                              EnglishCharsTokenizer) or isinstance(
                                  self.tokenizer, EnglishPhonemesTokenizer)

            preprocess_texts_as_tts_input = [
                self.tokenizer.text_preprocessing_func(t) for t in raw_texts
            ]
            lm_tokens_as_ids_list = [
                lm_model_tokenizer.encode(t, add_special_tokens=False)
                for t in preprocess_texts_as_tts_input
            ]

            if self.tokenizer.pad_with_space:
                lm_tokens_as_ids_list = [[lm_space_value] + t +
                                         [lm_space_value]
                                         for t in lm_tokens_as_ids_list]

            lm_tokens = torch.full(
                (len(lm_tokens_as_ids_list),
                 max([len(t) for t in lm_tokens_as_ids_list])),
                fill_value=lm_padding_value,
                device=tokens.device,
            )
            for i, lm_tokens_i in enumerate(lm_tokens_as_ids_list):
                lm_tokens[i, :len(lm_tokens_i)] = torch.tensor(
                    lm_tokens_i, device=tokens.device)

        pred_spect = self.infer(tokens, tokens_len,
                                lm_tokens=lm_tokens).transpose(1, 2)
        return pred_spect

    def parse(self, text: str, normalize=True) -> torch.Tensor:
        if normalize and getattr(self, "text_normalizer_call",
                                 None) is not None:
            text = self.text_normalizer_call(text,
                                             **self.text_normalizer_call_args)
        return torch.tensor(
            self.tokenizer.encode(text)).long().unsqueeze(0).to(self.device)

    @staticmethod
    def _loader(cfg):
        try:
            _ = cfg.dataset.manifest_filepath
        except omegaconf.errors.MissingMandatoryValue:
            logging.warning(
                "manifest_filepath was skipped. No dataset for this model.")
            return None

        dataset = instantiate(cfg.dataset)
        return torch.utils.data.DataLoader(  # noqa
            dataset=dataset,
            collate_fn=dataset.collate_fn,
            **cfg.dataloader_params,
        )

    def setup_training_data(self, cfg):
        self._train_dl = self._loader(cfg)

    def setup_validation_data(self, cfg):
        self._validation_dl = self._loader(cfg)

    def setup_test_data(self, cfg):
        """Omitted."""
        pass

    @classmethod
    def list_available_models(cls):
        """Empty."""
        pass

    @property
    def input_types(self):
        return {
            "text":
            NeuralType(('B', 'T_text'), TokenIndex()),
            "lm_tokens":
            NeuralType(('B', 'T_lm_tokens'), TokenIndex(), optional=True),
        }

    @property
    def output_types(self):
        return {
            "spect": NeuralType(('B', 'D', 'T_spec'), MelSpectrogramType()),
        }

    def forward_for_export(self, text, lm_tokens=None):
        text_mask = (text != self.tokenizer_pad).unsqueeze(2)
        spect = self.infer(text=text, text_mask=text_mask,
                           lm_tokens=lm_tokens).transpose(1, 2)
        return spect.to(torch.float)
Beispiel #11
0
class FastPitchHifiGanE2EModel(TextToWaveform):
    """An end-to-end speech synthesis model based on FastPitch and HiFiGan that converts strings to audio without using
    the intermediate mel spectrogram representation.
    """
    def __init__(self, cfg: DictConfig, trainer: Trainer = None):
        if isinstance(cfg, dict):
            cfg = OmegaConf.create(cfg)

        self._parser = parsers.make_parser(
            labels=cfg.labels,
            name='en',
            unk_id=-1,
            blank_id=-1,
            do_normalize=True,
            abbreviation_version="fastpitch",
            make_table=False,
        )

        super().__init__(cfg=cfg, trainer=trainer)

        schema = OmegaConf.structured(FastPitchHifiGanE2EConfig)
        # ModelPT ensures that cfg is a DictConfig, but do this second check in case ModelPT changes
        if isinstance(cfg, dict):
            cfg = OmegaConf.create(cfg)
        elif not isinstance(cfg, DictConfig):
            raise ValueError(
                f"cfg was type: {type(cfg)}. Expected either a dict or a DictConfig"
            )
        # Ensure passed cfg is compliant with schema
        OmegaConf.merge(cfg, schema)

        self.preprocessor = instantiate(cfg.preprocessor)
        self.melspec_fn = instantiate(cfg.preprocessor,
                                      highfreq=None,
                                      use_grads=True)

        self.encoder = instantiate(cfg.input_fft)
        self.duration_predictor = instantiate(cfg.duration_predictor)
        self.pitch_predictor = instantiate(cfg.pitch_predictor)

        self.generator = instantiate(cfg.generator)
        self.multiperioddisc = MultiPeriodDiscriminator()
        self.multiscaledisc = MultiScaleDiscriminator()
        self.mel_val_loss = L1MelLoss()
        self.feat_matching_loss = FeatureMatchingLoss()
        self.disc_loss = DiscriminatorLoss()
        self.gen_loss = GeneratorLoss()

        self.max_token_duration = cfg.max_token_duration

        self.pitch_emb = torch.nn.Conv1d(
            1,
            cfg.symbols_embedding_dim,
            kernel_size=cfg.pitch_embedding_kernel_size,
            padding=int((cfg.pitch_embedding_kernel_size - 1) / 2),
        )

        # Store values precomputed from training data for convenience
        self.register_buffer('pitch_mean', torch.zeros(1))
        self.register_buffer('pitch_std', torch.zeros(1))

        self.pitchloss = PitchLoss()
        self.durationloss = DurationLoss()

        self.mel_loss_coeff = cfg.mel_loss_coeff

        self.log_train_images = False
        self.logged_real_samples = False
        self._tb_logger = None
        self.hann_window = None
        self.splice_length = cfg.splice_length
        self.sample_rate = cfg.sample_rate
        self.hop_size = cfg.hop_size

    @property
    def tb_logger(self):
        if self._tb_logger is None:
            if self.logger is None and self.logger.experiment is None:
                return None
            tb_logger = self.logger.experiment
            if isinstance(self.logger, LoggerCollection):
                for logger in self.logger:
                    if isinstance(logger, TensorBoardLogger):
                        tb_logger = logger.experiment
                        break
            self._tb_logger = tb_logger
        return self._tb_logger

    @property
    def parser(self):
        if self._parser is not None:
            return self._parser

        self._parser = parsers.make_parser(
            labels=self._cfg.labels,
            name='en',
            unk_id=-1,
            blank_id=-1,
            do_normalize=True,
            abbreviation_version="fastpitch",
            make_table=False,
        )
        return self._parser

    def parse(self, str_input: str) -> torch.tensor:
        if str_input[-1] not in [".", "!", "?"]:
            str_input = str_input + "."

        tokens = self.parser(str_input)

        x = torch.tensor(tokens).unsqueeze_(0).long().to(self.device)
        return x

    def configure_optimizers(self):
        gen_params = chain(
            self.pitch_emb.parameters(),
            self.encoder.parameters(),
            self.duration_predictor.parameters(),
            self.pitch_predictor.parameters(),
            self.generator.parameters(),
        )
        disc_params = chain(self.multiscaledisc.parameters(),
                            self.multiperioddisc.parameters())
        opt1 = torch.optim.AdamW(disc_params, lr=self._cfg.lr)
        opt2 = torch.optim.AdamW(gen_params, lr=self._cfg.lr)
        num_procs = self._trainer.num_gpus * self._trainer.num_nodes
        num_samples = len(self._train_dl.dataset)
        batch_size = self._train_dl.batch_size
        iter_per_epoch = np.ceil(num_samples / (num_procs * batch_size))
        max_steps = iter_per_epoch * self._trainer.max_epochs
        logging.info(f"MAX STEPS: {max_steps}")
        sch1 = NoamAnnealing(opt1,
                             d_model=1,
                             warmup_steps=1000,
                             max_steps=max_steps,
                             last_epoch=-1)
        sch1_dict = {
            'scheduler': sch1,
            'interval': 'step',
        }
        sch2 = NoamAnnealing(opt2,
                             d_model=1,
                             warmup_steps=1000,
                             max_steps=max_steps,
                             last_epoch=-1)
        sch2_dict = {
            'scheduler': sch2,
            'interval': 'step',
        }
        return [opt1, opt2], [sch1_dict, sch2_dict]

    @typecheck(
        input_types={
            "text": NeuralType(('B', 'T'), TokenIndex()),
            "durs": NeuralType(('B', 'T'), TokenDurationType(), optional=True),
            "pitch": NeuralType(('B', 'T'),
                                RegressionValuesType(),
                                optional=True),
            "pace": NeuralType(optional=True),
            "splice": NeuralType(optional=True),
        },
        output_types={
            "audio": NeuralType(('B', 'S', 'T'), AudioSignal()),
            "splices": NeuralType(),
            "log_dur_preds": NeuralType(('B', 'T'), TokenLogDurationType()),
            "pitch_preds": NeuralType(('B', 'T'), RegressionValuesType()),
        },
    )
    def forward(self, *, text, durs=None, pitch=None, pace=1.0, splice=True):
        if self.training:
            assert durs is not None
            assert pitch is not None

        # Input FFT
        enc_out, enc_mask = self.encoder(input=text, conditioning=0)

        # Embedded for predictors
        pred_enc_out, pred_enc_mask = enc_out, enc_mask

        # Predict durations
        log_durs_predicted = self.duration_predictor(pred_enc_out,
                                                     pred_enc_mask)
        durs_predicted = torch.clamp(
            torch.exp(log_durs_predicted) - 1, 0, self.max_token_duration)

        # Predict pitch
        pitch_predicted = self.pitch_predictor(enc_out, enc_mask)
        if pitch is None:
            pitch_emb = self.pitch_emb(pitch_predicted.unsqueeze(1))
        else:
            pitch_emb = self.pitch_emb(pitch.unsqueeze(1))
        enc_out = enc_out + pitch_emb.transpose(1, 2)

        if durs is None:
            len_regulated, dec_lens = regulate_len(durs_predicted, enc_out,
                                                   pace)
        else:
            len_regulated, dec_lens = regulate_len(durs, enc_out, pace)

        gen_in = len_regulated
        splices = []
        if splice:
            output = []
            for i, sample in enumerate(len_regulated):
                start = np.random.randint(
                    low=0,
                    high=min(int(sample.size(0)), int(dec_lens[i])) -
                    self.splice_length)
                # Splice generated spec
                output.append(sample[start:start + self.splice_length, :])
                splices.append(start)
            gen_in = torch.stack(output)

        output = self.generator(x=gen_in.transpose(1, 2))

        return output, torch.tensor(
            splices), log_durs_predicted, pitch_predicted

    def training_step(self, batch, batch_idx, optimizer_idx):
        audio, _, text, text_lens, durs, pitch, _ = batch

        # train discriminator
        if optimizer_idx == 0:
            with torch.no_grad():
                audio_pred, splices, _, _ = self(text=text,
                                                 durs=durs,
                                                 pitch=pitch)
                real_audio = []
                for i, splice in enumerate(splices):
                    real_audio.append(
                        audio[i, splice *
                              self.hop_size:(splice + self.splice_length) *
                              self.hop_size])
                real_audio = torch.stack(real_audio).unsqueeze(1)

            real_score_mp, gen_score_mp, _, _ = self.multiperioddisc(
                real_audio, audio_pred)
            real_score_ms, gen_score_ms, _, _ = self.multiscaledisc(
                real_audio, audio_pred)

            loss_mp, loss_mp_real, _ = self.disc_loss(
                disc_real_outputs=real_score_mp,
                disc_generated_outputs=gen_score_mp)
            loss_ms, loss_ms_real, _ = self.disc_loss(
                disc_real_outputs=real_score_ms,
                disc_generated_outputs=gen_score_ms)
            loss_mp /= len(loss_mp_real)
            loss_ms /= len(loss_ms_real)
            loss_disc = loss_mp + loss_ms

            self.log("loss_discriminator", loss_disc, prog_bar=True)
            self.log("loss_discriminator_ms", loss_ms)
            self.log("loss_discriminator_mp", loss_mp)
            return loss_disc

        # train generator
        elif optimizer_idx == 1:
            audio_pred, splices, log_dur_preds, pitch_preds = self(text=text,
                                                                   durs=durs,
                                                                   pitch=pitch)
            real_audio = []
            for i, splice in enumerate(splices):
                real_audio.append(
                    audio[i, splice *
                          self.hop_size:(splice + self.splice_length) *
                          self.hop_size])
            real_audio = torch.stack(real_audio).unsqueeze(1)

            dur_loss = self.durationloss(log_durs_predicted=log_dur_preds,
                                         durs_tgt=durs,
                                         len=text_lens)
            pitch_loss = self.pitchloss(
                pitch_predicted=pitch_preds,
                pitch_tgt=pitch,
            )

            # Do HiFiGAN generator loss
            audio_length = torch.tensor([
                self.splice_length * self.hop_size
                for _ in range(real_audio.shape[0])
            ]).to(real_audio.device)
            real_spliced_spec, _ = self.melspec_fn(real_audio.squeeze(),
                                                   audio_length)
            pred_spliced_spec, _ = self.melspec_fn(audio_pred.squeeze(),
                                                   audio_length)
            loss_mel = torch.nn.functional.l1_loss(real_spliced_spec,
                                                   pred_spliced_spec)
            loss_mel *= self.mel_loss_coeff
            _, gen_score_mp, _, _ = self.multiperioddisc(
                real_audio, audio_pred)
            _, gen_score_ms, _, _ = self.multiscaledisc(y=real_audio,
                                                        y_hat=audio_pred)
            loss_gen_mp, list_loss_gen_mp = self.gen_loss(
                disc_outputs=gen_score_mp)
            loss_gen_ms, list_loss_gen_ms = self.gen_loss(
                disc_outputs=gen_score_ms)
            loss_gen_mp /= len(list_loss_gen_mp)
            loss_gen_ms /= len(list_loss_gen_ms)
            total_loss = loss_gen_mp + loss_gen_ms + loss_mel
            total_loss += dur_loss
            total_loss += pitch_loss

            self.log(name="loss_gen_mel", value=loss_mel)
            self.log(name="loss_gen_disc", value=loss_gen_mp + loss_gen_ms)
            self.log(name="loss_gen_disc_mp", value=loss_gen_mp)
            self.log(name="loss_gen_disc_ms", value=loss_gen_ms)
            self.log(name="loss_gen_duration", value=dur_loss)
            self.log(name="loss_gen_pitch", value=pitch_loss)

            # Log images to tensorboard
            if self.log_train_images:
                self.log_train_images = False

                if self.logger is not None and self.logger.experiment is not None:
                    self.tb_logger.add_image(
                        "train_mel_target",
                        plot_spectrogram_to_numpy(
                            real_spliced_spec[0].data.cpu().numpy()),
                        self.global_step,
                        dataformats="HWC",
                    )
                    spec_predict = pred_spliced_spec[0].data.cpu().numpy()
                    self.tb_logger.add_image(
                        "train_mel_predicted",
                        plot_spectrogram_to_numpy(spec_predict),
                        self.global_step,
                        dataformats="HWC",
                    )
            self.log(name="loss_gen", prog_bar=True, value=total_loss)
            return total_loss

    def validation_step(self, batch, batch_idx):
        audio, audio_lens, text, _, _, _, _ = batch
        mels, mel_lens = self.preprocessor(audio, audio_lens)

        audio_pred, _, log_durs_predicted, _ = self(text=text,
                                                    durs=None,
                                                    pitch=None,
                                                    splice=False)
        audio_length = torch.sum(torch.clamp(torch.exp(log_durs_predicted - 1),
                                             0),
                                 axis=1)
        audio_pred.squeeze_()
        pred_spec, _ = self.melspec_fn(audio_pred, audio_length)
        loss = self.mel_val_loss(spec_pred=pred_spec,
                                 spec_target=mels,
                                 spec_target_len=mel_lens,
                                 pad_value=-11.52,
                                 transpose=False)

        return {
            "val_loss": loss,
            "audio_target": audio if batch_idx == 0 else None,
            "audio_pred": audio_pred.squeeze() if batch_idx == 0 else None,
        }

    def validation_epoch_end(self, outputs):
        if self.tb_logger is not None:
            _, audio_target, audio_predict = outputs[0].values()
            if not self.logged_real_samples:
                self.tb_logger.add_audio("val_target",
                                         audio_target[0].data.cpu(),
                                         self.global_step, self.sample_rate)
                self.logged_real_samples = True
            audio_predict = audio_predict[0].data.cpu()
            self.tb_logger.add_audio("val_pred", audio_predict,
                                     self.global_step, self.sample_rate)
        avg_loss = torch.stack([
            x['val_loss'] for x in outputs
        ]).mean()  # This reduces across batches, not workers!
        self.log('val_loss', avg_loss, sync_dist=True)

        self.log_train_images = True

    def _loader(self, cfg):
        dataset = FastPitchDataset(
            manifest_filepath=cfg['manifest_filepath'],
            parser=self.parser,
            sample_rate=cfg['sample_rate'],
            int_values=cfg.get('int_values', False),
            max_duration=cfg.get('max_duration', None),
            min_duration=cfg.get('min_duration', None),
            max_utts=cfg.get('max_utts', 0),
            trim=cfg.get('trim_silence', True),
        )

        return torch.utils.data.DataLoader(
            dataset=dataset,
            batch_size=cfg['batch_size'],
            collate_fn=dataset.collate_fn,
            drop_last=cfg.get('drop_last', True),
            shuffle=cfg['shuffle'],
            num_workers=cfg.get('num_workers', 16),
        )

    def setup_training_data(self, cfg):
        self._train_dl = self._loader(cfg)

    def setup_validation_data(self, cfg):
        self._validation_dl = self._loader(cfg)

    def setup_test_data(self, cfg):
        """Omitted."""
        pass

    @classmethod
    def list_available_models(cls) -> 'List[PretrainedModelInfo]':
        """
        This method returns a list of pre-trained model which can be instantiated directly from NVIDIA's NGC cloud.
        Returns:
            List of available pre-trained models.
        """
        list_of_models = []
        model = PretrainedModelInfo(
            pretrained_model_name="tts_en_e2e_fastpitchhifigan",
            location=
            "https://api.ngc.nvidia.com/v2/models/nvidia/nemo/tts_en_e2e_fastpitchhifigan/versions/1.0.0/files/tts_en_e2e_fastpitchhifigan.nemo",
            description=
            "This model is trained on LJSpeech sampled at 22050Hz with and can be used to generate female English voices with an American accent.",
            class_=cls,
        )
        list_of_models.append(model)

        return list_of_models

    def convert_text_to_waveform(self, *, tokens):
        """
        Accepts tokens returned from self.parse() and returns a list of tensors. Note: The tensors in the list can have
        different lengths.
        """
        self.eval()
        audio, _, log_dur_pred, _ = self(text=tokens, splice=False)
        audio = audio.squeeze(1)
        durations = torch.sum(
            torch.clamp(
                torch.exp(log_dur_pred) - 1, 0, self.max_token_duration),
            1).to(torch.int)
        audio_list = []
        for i, sample in enumerate(audio):
            audio_list.append(sample[:durations[i] * self.hop_size])

        return audio_list