Beispiel #1
0
def test_distributions():
    check_init_args(PDF, ["x", "p"])
    check_repr(PDF([1, 2, 3], [0.1, 0.8, 0.1]))
    assert (repr(PDF(
        [1, 2], [0.4, 0.6])) == "PDF(x=array([1., 2.]), p=array([0.4, 0.6]))")

    check_init_args(Uniform, ["low", "high", "integer"])
    check_repr(Uniform(1, 3))
    check_repr(Uniform(1, 4, integer=True))
    assert repr(Uniform(0, 1)) == "Uniform(low=0, high=1)"
    assert repr(Uniform(
        0, 5, integer=True)) == "Uniform(low=0, high=5, integer=True)"

    check_init_args(Gaussian, ["mean", "std"])
    check_repr(Gaussian(0, 2))
    assert repr(Gaussian(1, 0.1)) == "Gaussian(mean=1, std=0.1)"

    check_init_args(Exponential, ["scale", "shift", "high"])
    check_repr(Exponential(2.0))
    check_repr(Exponential(2.0, shift=0.1))
    check_repr(Exponential(2.0, shift=0.1, high=10.0))
    assert repr(Exponential(2.0)) == "Exponential(scale=2.0)"

    check_init_args(UniformHypersphere, ["surface", "min_magnitude"])
    check_repr(UniformHypersphere())
    check_repr(UniformHypersphere(surface=True))
    check_repr(UniformHypersphere(min_magnitude=0.3))
    assert repr(UniformHypersphere()) == "UniformHypersphere()"
    assert repr(
        UniformHypersphere(surface=True)) == "UniformHypersphere(surface=True)"

    check_init_args(Choice, ["options", "weights"])
    check_repr(Choice([3, 2, 1]))
    check_repr(Choice([3, 2, 1], weights=[0.1, 0.2, 0.7]))
    assert repr(Choice([1, 2, 3])) == "Choice(options=array([1., 2., 3.]))"
    assert (repr(
        Choice([1, 2, 3], weights=[0.1, 0.5, 0.4])
    ) == "Choice(options=array([1., 2., 3.]), weights=array([0.1, 0.5, 0.4]))")

    check_init_args(Samples, ["samples"])
    check_repr(Samples([3, 2, 1]))
    assert repr(Samples([3, 2, 1])) == "Samples(samples=array([3., 2., 1.]))"

    check_init_args(SqrtBeta, ["n", "m"])
    check_repr(SqrtBeta(3))
    check_repr(SqrtBeta(3, m=2))
    assert repr(SqrtBeta(3)) == "SqrtBeta(n=3)"
    assert repr(SqrtBeta(3, 2)) == "SqrtBeta(n=3, m=2)"

    check_init_args(SubvectorLength, ["dimensions", "subdimensions"])
    check_repr(SubvectorLength(6))
    check_repr(SubvectorLength(6, 2))
    assert repr(SubvectorLength(3)) == "SubvectorLength(dimensions=3)"

    check_init_args(CosineSimilarity, ["dimensions"])
    check_repr(CosineSimilarity(6))
    assert repr(CosineSimilarity(6)) == "CosineSimilarity(dimensions=6)"
Beispiel #2
0
def test_pdf(rng, allclose):
    s = 0.25
    f = lambda x: (
        np.exp(-0.5 * (x + 0.5) ** 2 / s ** 2) + np.exp(-0.5 * (x - 0.5) ** 2 / s ** 2)
    )

    xref = np.linspace(-2, 2, 101)
    pref = f(xref)
    pref /= pref.sum()
    dist = PDF(xref, pref)

    n = 100000
    samples = dist.sample(n, rng=rng)
    h, xedges = np.histogram(samples, bins=101)
    x = 0.5 * (xedges[:-1] + xedges[1:])
    dx = np.diff(xedges)
    y = h / float(h.sum()) / dx
    z = f(x)
    z = z / z.sum() / dx
    assert allclose(y, z, atol=0.05)

    with pytest.raises(ValidationError, match="PDF must sum to one"):
        dist = PDF([0, 1, 2], [0.1, 1.1, 0.1])

    with pytest.raises(ValidationError, match="`x` and `p` must be the same length"):
        dist = PDF([0, 1], [0, 1, 0])
Beispiel #3
0
def test_pdf(rng):
    s = 0.25
    f = lambda x: (np.exp(-0.5 *
                          (x + 0.5)**2 / s**2) + np.exp(-0.5 *
                                                        (x - 0.5)**2 / s**2))

    xref = np.linspace(-2, 2, 101)
    pref = f(xref)
    pref /= pref.sum()
    dist = PDF(xref, pref)

    n = 100000
    samples = dist.sample(n, rng=rng)
    h, xedges = np.histogram(samples, bins=101)
    x = 0.5 * (xedges[:-1] + xedges[1:])
    dx = np.diff(xedges)
    y = h / float(h.sum()) / dx
    z = f(x)
    z = z / z.sum() / dx
    assert np.allclose(y, z, atol=0.05)
Beispiel #4
0
def test_argreprs():
    def check_init_args(cls, args):
        assert getfullargspec(cls.__init__).args[1:] == args

    def check_repr(obj):
        assert eval(repr(obj)) == obj

    check_init_args(PDF, ['x', 'p'])
    check_repr(PDF([1, 2, 3], [0.1, 0.8, 0.1]))

    check_init_args(Uniform, ['low', 'high', 'integer'])
    check_repr(Uniform(1, 3))
    check_repr(Uniform(1, 4, integer=True))

    check_init_args(Gaussian, ['mean', 'std'])
    check_repr(Gaussian(0, 2))

    check_init_args(Exponential, ['scale', 'shift', 'high'])
    check_repr(Exponential(2.))
    check_repr(Exponential(2., shift=0.1))
    check_repr(Exponential(2., shift=0.1, high=10.))

    check_init_args(UniformHypersphere, ['surface', 'min_magnitude'])
    check_repr(UniformHypersphere())
    check_repr(UniformHypersphere(surface=True))
    check_repr(UniformHypersphere(min_magnitude=0.3))

    check_init_args(Choice, ['options', 'weights'])
    check_repr(Choice([3, 2, 1]))
    check_repr(Choice([3, 2, 1], weights=[0.1, 0.2, 0.7]))

    check_init_args(Samples, ['samples'])
    check_repr(Samples([3, 2, 1]))

    check_init_args(SqrtBeta, ['n', 'm'])
    check_repr(SqrtBeta(3))
    check_repr(SqrtBeta(3, m=2))

    check_init_args(SubvectorLength, ['dimensions', 'subdimensions'])
    check_repr(SubvectorLength(6))
    check_repr(SubvectorLength(6, 2))

    check_init_args(CosineSimilarity, ['dimensions'])
    check_repr(CosineSimilarity(6))
Beispiel #5
0
def test_argreprs():
    def check_init_args(cls, args):
        assert getfullargspec(cls.__init__).args[1:] == args

    def check_repr(obj):
        assert eval(repr(obj)) == obj

    check_init_args(PDF, ["x", "p"])
    check_repr(PDF([1, 2, 3], [0.1, 0.8, 0.1]))

    check_init_args(Uniform, ["low", "high", "integer"])
    check_repr(Uniform(1, 3))
    check_repr(Uniform(1, 4, integer=True))

    check_init_args(Gaussian, ["mean", "std"])
    check_repr(Gaussian(0, 2))

    check_init_args(Exponential, ["scale", "shift", "high"])
    check_repr(Exponential(2.0))
    check_repr(Exponential(2.0, shift=0.1))
    check_repr(Exponential(2.0, shift=0.1, high=10.0))

    check_init_args(UniformHypersphere, ["surface", "min_magnitude"])
    check_repr(UniformHypersphere())
    check_repr(UniformHypersphere(surface=True))
    check_repr(UniformHypersphere(min_magnitude=0.3))

    check_init_args(Choice, ["options", "weights"])
    check_repr(Choice([3, 2, 1]))
    check_repr(Choice([3, 2, 1], weights=[0.1, 0.2, 0.7]))

    check_init_args(Samples, ["samples"])
    check_repr(Samples([3, 2, 1]))

    check_init_args(SqrtBeta, ["n", "m"])
    check_repr(SqrtBeta(3))
    check_repr(SqrtBeta(3, m=2))

    check_init_args(SubvectorLength, ["dimensions", "subdimensions"])
    check_repr(SubvectorLength(6))
    check_repr(SubvectorLength(6, 2))

    check_init_args(CosineSimilarity, ["dimensions"])
    check_repr(CosineSimilarity(6))