def test_distributions(): check_init_args(PDF, ["x", "p"]) check_repr(PDF([1, 2, 3], [0.1, 0.8, 0.1])) assert (repr(PDF( [1, 2], [0.4, 0.6])) == "PDF(x=array([1., 2.]), p=array([0.4, 0.6]))") check_init_args(Uniform, ["low", "high", "integer"]) check_repr(Uniform(1, 3)) check_repr(Uniform(1, 4, integer=True)) assert repr(Uniform(0, 1)) == "Uniform(low=0, high=1)" assert repr(Uniform( 0, 5, integer=True)) == "Uniform(low=0, high=5, integer=True)" check_init_args(Gaussian, ["mean", "std"]) check_repr(Gaussian(0, 2)) assert repr(Gaussian(1, 0.1)) == "Gaussian(mean=1, std=0.1)" check_init_args(Exponential, ["scale", "shift", "high"]) check_repr(Exponential(2.0)) check_repr(Exponential(2.0, shift=0.1)) check_repr(Exponential(2.0, shift=0.1, high=10.0)) assert repr(Exponential(2.0)) == "Exponential(scale=2.0)" check_init_args(UniformHypersphere, ["surface", "min_magnitude"]) check_repr(UniformHypersphere()) check_repr(UniformHypersphere(surface=True)) check_repr(UniformHypersphere(min_magnitude=0.3)) assert repr(UniformHypersphere()) == "UniformHypersphere()" assert repr( UniformHypersphere(surface=True)) == "UniformHypersphere(surface=True)" check_init_args(Choice, ["options", "weights"]) check_repr(Choice([3, 2, 1])) check_repr(Choice([3, 2, 1], weights=[0.1, 0.2, 0.7])) assert repr(Choice([1, 2, 3])) == "Choice(options=array([1., 2., 3.]))" assert (repr( Choice([1, 2, 3], weights=[0.1, 0.5, 0.4]) ) == "Choice(options=array([1., 2., 3.]), weights=array([0.1, 0.5, 0.4]))") check_init_args(Samples, ["samples"]) check_repr(Samples([3, 2, 1])) assert repr(Samples([3, 2, 1])) == "Samples(samples=array([3., 2., 1.]))" check_init_args(SqrtBeta, ["n", "m"]) check_repr(SqrtBeta(3)) check_repr(SqrtBeta(3, m=2)) assert repr(SqrtBeta(3)) == "SqrtBeta(n=3)" assert repr(SqrtBeta(3, 2)) == "SqrtBeta(n=3, m=2)" check_init_args(SubvectorLength, ["dimensions", "subdimensions"]) check_repr(SubvectorLength(6)) check_repr(SubvectorLength(6, 2)) assert repr(SubvectorLength(3)) == "SubvectorLength(dimensions=3)" check_init_args(CosineSimilarity, ["dimensions"]) check_repr(CosineSimilarity(6)) assert repr(CosineSimilarity(6)) == "CosineSimilarity(dimensions=6)"
def test_pdf(rng, allclose): s = 0.25 f = lambda x: ( np.exp(-0.5 * (x + 0.5) ** 2 / s ** 2) + np.exp(-0.5 * (x - 0.5) ** 2 / s ** 2) ) xref = np.linspace(-2, 2, 101) pref = f(xref) pref /= pref.sum() dist = PDF(xref, pref) n = 100000 samples = dist.sample(n, rng=rng) h, xedges = np.histogram(samples, bins=101) x = 0.5 * (xedges[:-1] + xedges[1:]) dx = np.diff(xedges) y = h / float(h.sum()) / dx z = f(x) z = z / z.sum() / dx assert allclose(y, z, atol=0.05) with pytest.raises(ValidationError, match="PDF must sum to one"): dist = PDF([0, 1, 2], [0.1, 1.1, 0.1]) with pytest.raises(ValidationError, match="`x` and `p` must be the same length"): dist = PDF([0, 1], [0, 1, 0])
def test_pdf(rng): s = 0.25 f = lambda x: (np.exp(-0.5 * (x + 0.5)**2 / s**2) + np.exp(-0.5 * (x - 0.5)**2 / s**2)) xref = np.linspace(-2, 2, 101) pref = f(xref) pref /= pref.sum() dist = PDF(xref, pref) n = 100000 samples = dist.sample(n, rng=rng) h, xedges = np.histogram(samples, bins=101) x = 0.5 * (xedges[:-1] + xedges[1:]) dx = np.diff(xedges) y = h / float(h.sum()) / dx z = f(x) z = z / z.sum() / dx assert np.allclose(y, z, atol=0.05)
def test_argreprs(): def check_init_args(cls, args): assert getfullargspec(cls.__init__).args[1:] == args def check_repr(obj): assert eval(repr(obj)) == obj check_init_args(PDF, ['x', 'p']) check_repr(PDF([1, 2, 3], [0.1, 0.8, 0.1])) check_init_args(Uniform, ['low', 'high', 'integer']) check_repr(Uniform(1, 3)) check_repr(Uniform(1, 4, integer=True)) check_init_args(Gaussian, ['mean', 'std']) check_repr(Gaussian(0, 2)) check_init_args(Exponential, ['scale', 'shift', 'high']) check_repr(Exponential(2.)) check_repr(Exponential(2., shift=0.1)) check_repr(Exponential(2., shift=0.1, high=10.)) check_init_args(UniformHypersphere, ['surface', 'min_magnitude']) check_repr(UniformHypersphere()) check_repr(UniformHypersphere(surface=True)) check_repr(UniformHypersphere(min_magnitude=0.3)) check_init_args(Choice, ['options', 'weights']) check_repr(Choice([3, 2, 1])) check_repr(Choice([3, 2, 1], weights=[0.1, 0.2, 0.7])) check_init_args(Samples, ['samples']) check_repr(Samples([3, 2, 1])) check_init_args(SqrtBeta, ['n', 'm']) check_repr(SqrtBeta(3)) check_repr(SqrtBeta(3, m=2)) check_init_args(SubvectorLength, ['dimensions', 'subdimensions']) check_repr(SubvectorLength(6)) check_repr(SubvectorLength(6, 2)) check_init_args(CosineSimilarity, ['dimensions']) check_repr(CosineSimilarity(6))
def test_argreprs(): def check_init_args(cls, args): assert getfullargspec(cls.__init__).args[1:] == args def check_repr(obj): assert eval(repr(obj)) == obj check_init_args(PDF, ["x", "p"]) check_repr(PDF([1, 2, 3], [0.1, 0.8, 0.1])) check_init_args(Uniform, ["low", "high", "integer"]) check_repr(Uniform(1, 3)) check_repr(Uniform(1, 4, integer=True)) check_init_args(Gaussian, ["mean", "std"]) check_repr(Gaussian(0, 2)) check_init_args(Exponential, ["scale", "shift", "high"]) check_repr(Exponential(2.0)) check_repr(Exponential(2.0, shift=0.1)) check_repr(Exponential(2.0, shift=0.1, high=10.0)) check_init_args(UniformHypersphere, ["surface", "min_magnitude"]) check_repr(UniformHypersphere()) check_repr(UniformHypersphere(surface=True)) check_repr(UniformHypersphere(min_magnitude=0.3)) check_init_args(Choice, ["options", "weights"]) check_repr(Choice([3, 2, 1])) check_repr(Choice([3, 2, 1], weights=[0.1, 0.2, 0.7])) check_init_args(Samples, ["samples"]) check_repr(Samples([3, 2, 1])) check_init_args(SqrtBeta, ["n", "m"]) check_repr(SqrtBeta(3)) check_repr(SqrtBeta(3, m=2)) check_init_args(SubvectorLength, ["dimensions", "subdimensions"]) check_repr(SubvectorLength(6)) check_repr(SubvectorLength(6, 2)) check_init_args(CosineSimilarity, ["dimensions"]) check_repr(CosineSimilarity(6))