Beispiel #1
0
    def validate(self, instance, ndarray):
        ndim = len(self.shape)
        try:
            ndarray = np.asarray(ndarray, dtype=np.float64)
        except TypeError:
            raise ValueError("Must be a float NumPy array (got type '%s')"
                             % ndarray.__class__.__name__)

        if ndarray.ndim != ndim:
            raise ValueError("ndarray must be %dD (got %dD)"
                             % (ndim, ndarray.ndim))
        for i, attr in enumerate(self.shape):
            assert is_integer(attr) or is_string(attr), (
                "shape can only be an int or str representing an attribute")
            if attr == '*':
                continue

            if is_integer(attr):
                desired = attr
            elif is_string(attr):
                desired = getattr(instance, attr)

            if ndarray.shape[i] != desired:
                raise ValueError("shape[%d] should be %d (got %d)"
                                 % (i, desired, ndarray.shape[i]))
        return ndarray
Beispiel #2
0
    def validate(self, instance, ndarray):
        ndim = len(self.shape)
        try:
            ndarray = np.asarray(ndarray, dtype=np.float64)
        except TypeError:
            raise ValueError("Must be a float NumPy array (got type '%s')" %
                             ndarray.__class__.__name__)

        if ndarray.ndim != ndim:
            raise ValueError("ndarray must be %dD (got %dD)" %
                             (ndim, ndarray.ndim))
        for i, attr in enumerate(self.shape):
            assert is_integer(attr) or is_string(attr), (
                "shape can only be an int or str representing an attribute")
            if attr == '*':
                continue

            if is_integer(attr):
                desired = attr
            elif is_string(attr):
                desired = getattr(instance, attr)

            if ndarray.shape[i] != desired:
                raise ValueError("shape[%d] should be %d (got %d)" %
                                 (i, desired, ndarray.shape[i]))
        return ndarray
Beispiel #3
0
    def validate(self, instance, ndarray):
        ndim = len(self.shape)
        try:
            ndarray = np.asarray(ndarray, dtype=np.float64)
        except TypeError:
            raise ValueError("Must be a float NumPy array (got type '%s')"
                             % ndarray.__class__.__name__)

        if ndarray.ndim != ndim:
            raise ValueError("ndarray must be %dD (got %dD)"
                             % (ndim, ndarray.ndim))
        for i, attr in enumerate(self.shape):
            assert is_integer(attr) or is_string(attr), (
                "shape can only be an int or str representing an attribute")
            if attr == '*':
                continue

            desired = attr if is_integer(attr) else getattr(instance, attr)

            if not is_integer(desired):
                raise ValueError("%s not yet initialized; cannot determine "
                                 "if shape is correct. Consider using a "
                                 "distribution instead." % attr)

            if ndarray.shape[i] != desired:
                raise ValueError("shape[%d] should be %d (got %d)"
                                 % (i, desired, ndarray.shape[i]))
        return ndarray
Beispiel #4
0
    def validate(self, instance, ndarray):
        ndim = len(self.shape)
        try:
            ndarray = np.asarray(ndarray, dtype=np.float64)
        except TypeError:
            raise ValueError("Must be a float NumPy array (got type '%s')" %
                             ndarray.__class__.__name__)

        if ndarray.ndim != ndim:
            raise ValueError("ndarray must be %dD (got %dD)" %
                             (ndim, ndarray.ndim))
        for i, attr in enumerate(self.shape):
            assert is_integer(attr) or is_string(attr), (
                "shape can only be an int or str representing an attribute")
            if attr == '*':
                continue

            desired = attr if is_integer(attr) else getattr(instance, attr)

            if not is_integer(desired):
                raise ValueError("%s not yet initialized; cannot determine "
                                 "if shape is correct. Consider using a "
                                 "distribution instead." % attr)

            if ndarray.shape[i] != desired:
                raise ValueError("shape[%d] should be %d (got %d)" %
                                 (i, desired, ndarray.shape[i]))
        return ndarray
Beispiel #5
0
    def coerce_ndarray(self, instance, ndarray):  # noqa: C901
        if isinstance(ndarray, np.ndarray):
            ndarray = ndarray.view()
        else:
            try:
                ndarray = np.array(ndarray, dtype=np.float64)
            except (ValueError, TypeError):
                raise ValidationError(
                    "Must be a float NumPy array (got type %r)"
                    % type(ndarray).__name__, attr=self.name, obj=instance)

        if self.readonly:
            ndarray.setflags(write=False)

        if self.shape is None:
            return ndarray

        if '...' in self.shape:
            # Convert '...' to the appropriate number of '*'s
            nfixed = len(self.shape) - 1
            n = ndarray.ndim - nfixed
            if n < 0:
                raise ValidationError("ndarray must be at least %dD (got %dD)"
                                      % (nfixed, ndarray.ndim),
                                      attr=self.name, obj=instance)

            i = self.shape.index('...')
            shape = list(self.shape[:i]) + (['*'] * n)
            if i < len(self.shape) - 1:
                shape.extend(self.shape[i+1:])
        else:
            shape = self.shape

        if ndarray.ndim != len(shape):
            raise ValidationError("ndarray must be %dD (got %dD)"
                                  % (len(shape), ndarray.ndim),
                                  attr=self.name, obj=instance)

        for i, attr in enumerate(shape):
            assert is_integer(attr) or is_string(attr), (
                "shape can only be an int or str representing an attribute")
            if attr == '*':
                continue

            desired = attr if is_integer(attr) else getattr(instance, attr)

            if not is_integer(desired):
                raise ValidationError(
                    "%s not yet initialized; cannot determine if shape is "
                    "correct. Consider using a distribution instead." % attr,
                    attr=self.name, obj=instance)

            if ndarray.shape[i] != desired:
                raise ValidationError("shape[%d] should be %d (got %d)"
                                      % (i, desired, ndarray.shape[i]),
                                      attr=self.name, obj=instance)
        return ndarray
Beispiel #6
0
    def validate(self, instance, ndarray):  # noqa: C901
        if isinstance(ndarray, np.ndarray):
            ndarray = ndarray.view()
        else:
            try:
                ndarray = np.array(ndarray, dtype=np.float64)
            except (ValueError, TypeError):
                raise ValidationError(
                    "Must be a float NumPy array (got type %r)" % ndarray.__class__.__name__,
                    attr=self.name,
                    obj=instance,
                )

        if self.readonly:
            ndarray.setflags(write=False)

        if "..." in self.shape:
            # Convert '...' to the appropriate number of '*'s
            nfixed = len(self.shape) - 1
            n = ndarray.ndim - nfixed
            if n < 0:
                raise ValidationError(
                    "ndarray must be at least %dD (got %dD)" % (nfixed, ndarray.ndim), attr=self.name, obj=instance
                )

            i = self.shape.index("...")
            shape = list(self.shape[:i]) + (["*"] * n)
            if i < len(self.shape) - 1:
                shape.extend(self.shape[i + 1 :])
        else:
            shape = self.shape

        if ndarray.ndim != len(shape):
            raise ValidationError(
                "ndarray must be %dD (got %dD)" % (len(shape), ndarray.ndim), attr=self.name, obj=instance
            )

        for i, attr in enumerate(shape):
            assert is_integer(attr) or is_string(attr), "shape can only be an int or str representing an attribute"
            if attr == "*":
                continue

            desired = attr if is_integer(attr) else getattr(instance, attr)

            if not is_integer(desired):
                raise ValidationError(
                    "%s not yet initialized; cannot determine if shape is "
                    "correct. Consider using a distribution instead." % attr,
                    attr=self.name,
                    obj=instance,
                )

            if ndarray.shape[i] != desired:
                raise ValidationError(
                    "shape[%d] should be %d (got %d)" % (i, desired, ndarray.shape[i]), attr=self.name, obj=instance
                )
        return ndarray
Beispiel #7
0
    def validate(self, instance, ndarray):  # noqa: C901
        if isinstance(ndarray, np.ndarray):
            ndarray = ndarray.view()
        else:
            try:
                ndarray = np.array(ndarray, dtype=np.float64)
            except TypeError:
                raise ValueError(
                    "Must be a float NumPy array (got type '%s')" %
                    ndarray.__class__.__name__)
        if self.readonly:
            ndarray.setflags(write=False)

        if '...' in self.shape:
            nfixed = len(self.shape) - 1
            n = ndarray.ndim - nfixed
            if n < 0:
                raise ValueError("ndarray must be at least %dD (got %dD)" %
                                 (nfixed, ndarray.ndim))

            i = self.shape.index('...')
            shape = list(self.shape[:i]) + (['*'] * n)
            if i < len(self.shape) - 1:
                shape.extend(self.shape[i + 1:])
        else:
            shape = self.shape

        if ndarray.ndim != len(shape):
            raise ValueError("ndarray must be %dD (got %dD)" %
                             (len(shape), ndarray.ndim))

        for i, attr in enumerate(shape):
            assert is_integer(attr) or is_string(attr), (
                "shape can only be an int or str representing an attribute")
            if attr == '*':
                continue

            desired = attr if is_integer(attr) else getattr(instance, attr)

            if not is_integer(desired):
                raise ValueError("%s not yet initialized; cannot determine "
                                 "if shape is correct. Consider using a "
                                 "distribution instead." % attr)

            if ndarray.shape[i] != desired:
                raise ValueError("shape[%d] should be %d (got %d)" %
                                 (i, desired, ndarray.shape[i]))
        return ndarray
Beispiel #8
0
    def __init__(
            self, dimensions, strict=True, max_similarity=0.1,
            pointer_gen=None, name=None, algebra=None):
        if algebra is None:
            algebra = HrrAlgebra()
        self.algebra = algebra

        if not is_integer(dimensions) or dimensions < 1:
            raise ValidationError("dimensions must be a positive integer",
                                  attr='dimensions', obj=self)

        if pointer_gen is None:
            pointer_gen = UnitLengthVectors(dimensions)
        elif isinstance(pointer_gen, np.random.RandomState):
            pointer_gen = UnitLengthVectors(dimensions, pointer_gen)

        if not is_iterable(pointer_gen) or is_string(pointer_gen):
            raise ValidationError(
                "pointer_gen must be iterable or RandomState",
                attr='pointer_gen', obj=self)

        self.dimensions = dimensions
        self.strict = strict
        self.max_similarity = max_similarity
        self._key2idx = {}
        self._keys = []
        self._vectors = np.zeros((0, dimensions), dtype=float)
        self.pointer_gen = pointer_gen
        self.name = name
Beispiel #9
0
    def __init__(self,
                 dimensions,
                 randomize=True,
                 unitary=False,
                 max_similarity=0.1,
                 include_pairs=False,
                 rng=None):

        if not is_integer(dimensions) or dimensions < 1:
            raise ValidationError("dimensions must be a positive integer",
                                  attr='dimensions',
                                  obj=self)
        self.dimensions = dimensions
        self.randomize = randomize
        self.unitary = unitary
        self.max_similarity = max_similarity
        self.pointers = {}
        self.keys = []
        self.key_pairs = None
        self.vectors = np.zeros((0, dimensions), dtype=float)
        self.vector_pairs = None
        self._include_pairs = None
        self.include_pairs = include_pairs
        self._identity = None
        self.rng = rng
        self.readonly = False
        self.parent = None
Beispiel #10
0
    def __init__(self, obj, key=slice(None)):
        self.obj = obj

        # Node.size_in != size_out, so one of these can be invalid
        # NumPy <= 1.8 raises a ValueError instead of an IndexError.
        try:
            self.size_in = np.arange(self.obj.size_in)[key].size
        except (IndexError, ValueError):
            self.size_in = None
        try:
            self.size_out = np.arange(self.obj.size_out)[key].size
        except (IndexError, ValueError):
            self.size_out = None
        if self.size_in is None and self.size_out is None:
            raise IndexError("Invalid slice '%s' of %s" % (key, self.obj))

        if is_integer(key):
            # single slices of the form [i] should be cast into
            # slice objects for convenience
            if key == -1:
                # special case because slice(-1, 0) gives the empty list
                self.slice = slice(key, None)
            else:
                self.slice = slice(key, key + 1)
        else:
            self.slice = key
Beispiel #11
0
    def __init__(self,
                 dimensions,
                 randomize=True,
                 unitary=False,
                 max_similarity=0.1,
                 include_pairs=False,
                 rng=None):

        if not is_integer(dimensions):
            raise TypeError('dimensions must be an integer')
        if dimensions < 1:
            raise ValueError('dimensions must be positive')
        self.dimensions = dimensions
        self.randomize = randomize
        self.unitary = unitary
        self.max_similarity = max_similarity
        self.pointers = {}
        self.keys = []
        self.key_pairs = None
        self.vectors = np.zeros((0, dimensions), dtype=float)
        self.vector_pairs = None
        self._include_pairs = None
        self.include_pairs = include_pairs
        self._identity = None
        self.rng = rng
Beispiel #12
0
    def __init__(
            self, stim_provider, items, contexts, n_pos, rng=None,
            extra_pos=3):
        super(Vocabularies, self).__init__()

        vocabs = Config.default(spa.Network, 'vocabs')
        if vocabs is None:
            vocabs = VocabularyMap(rng=rng)
        self.vocabs = vocabs

        self.items = items
        if is_integer(contexts):
            contexts = spa.Vocabulary(contexts, rng=rng)
        self.contexts = contexts
        self.positions = spa.Vocabulary(self.items.dimensions, rng=rng)

        self.items.populate(';'.join(stim_provider.get_all_items()))
        if stim_provider.n_distractors_per_epoch > 0:
            self.items.populate(';'.join(stim_provider.get_all_distractors()))

        for i in range(self.items.dimensions):
            self.contexts.populate('CTX' + str(i))

        for i in range(n_pos + extra_pos):
            self.positions.populate('P' + str(i))
Beispiel #13
0
    def __init__(self, obj, key=slice(None)):
        self.obj = obj
        if is_integer(key):
            # single slices of the form [i] should be cast into
            # slice objects for convenience
            if key == -1:
                # special case because slice(-1, 0) gives the empty list
                key = slice(key, None)
            else:
                key = slice(key, key + 1)
        self.slice = key

        # Node.size_in != size_out, so one of these can be invalid
        try:
            self.size_in = np.arange(self.obj.size_in)[self.slice].size
        except IndexError:
            self.size_in = None
        try:
            self.size_out = np.arange(self.obj.size_out)[self.slice].size
        except IndexError:
            self.size_out = None
        if self.size_in is None and self.size_out is None:
            raise ValidationError("Invalid slice '%s' of %s" %
                                  (self.slice, self.obj),
                                  attr='key')
Beispiel #14
0
    def validate(self, instance, ndarray):  # noqa: C901
        if isinstance(ndarray, np.ndarray):
            ndarray = ndarray.view()
        else:
            try:
                ndarray = np.array(ndarray, dtype=np.float64)
            except TypeError:
                raise ValueError("Must be a float NumPy array (got type '%s')"
                                 % ndarray.__class__.__name__)
        if self.readonly:
            ndarray.setflags(write=False)

        if '...' in self.shape:
            nfixed = len(self.shape) - 1
            n = ndarray.ndim - nfixed
            if n < 0:
                raise ValueError("ndarray must be at least %dD (got %dD)"
                                 % (nfixed, ndarray.ndim))

            i = self.shape.index('...')
            shape = list(self.shape[:i]) + (['*'] * n)
            if i < len(self.shape) - 1:
                shape.extend(self.shape[i+1:])
        else:
            shape = self.shape

        if ndarray.ndim != len(shape):
            raise ValueError("ndarray must be %dD (got %dD)"
                             % (len(shape), ndarray.ndim))

        for i, attr in enumerate(shape):
            assert is_integer(attr) or is_string(attr), (
                "shape can only be an int or str representing an attribute")
            if attr == '*':
                continue

            desired = attr if is_integer(attr) else getattr(instance, attr)

            if not is_integer(desired):
                raise ValueError("%s not yet initialized; cannot determine "
                                 "if shape is correct. Consider using a "
                                 "distribution instead." % attr)

            if ndarray.shape[i] != desired:
                raise ValueError("shape[%d] should be %d (got %d)"
                                 % (i, desired, ndarray.shape[i]))
        return ndarray
Beispiel #15
0
 def sample(self, n, d=1, rng=np.random):
     """Samples ``n`` points in ``d`` dimensions."""
     if d == 1:
         # Tile the points optimally. TODO: refactor
         return np.linspace(1. / n, 1, n)[:, None]
     if d is None or not is_integer(d) or d < 1:
         # TODO: this should be raised when the ensemble is created
         raise ValueError("d (%d) must be positive integer" % d)
     return _rd_generate(n, d)
Beispiel #16
0
 def validate(self, instance, value):
     super(ShapeParam, self).validate(instance, value)
     for i, v in enumerate(value):
         if not is_integer(v):
             raise ValidationError("Element %d must be an int (got type %r)"
                                   % (i, type(v).__name__),
                                   attr=self.name, obj=instance)
         if self.low is not None and v < self.low:
             raise ValidationError(
                 "Element %d must be >= %d (got %d)" % (i, self.low, v),
                 attr=self.name, obj=instance)
Beispiel #17
0
 def __pow__(self, other):
     if not is_integer(other):
         return NotImplemented
     n, d = self.tf
     if other > 0:
         return LinearSystem(normalize(n**other, d**other), self.analog)
     elif other < 0:
         return LinearSystem(normalize(d**-other, n**-other), self.analog)
     else:
         assert other == 0
         return LinearSystem(1., self.analog)
Beispiel #18
0
 def coerce(self, instance, value):
     value = super(ShapeParam, self).coerce(instance, value)
     for i, v in enumerate(value):
         if not is_integer(v):
             raise ValidationError("Element %d must be an int (got type %r)"
                                   % (i, type(v).__name__),
                                   attr=self.name, obj=instance)
         if self.low is not None and v < self.low:
             raise ValidationError(
                 "Element %d must be >= %d (got %d)" % (i, self.low, v),
                 attr=self.name, obj=instance)
Beispiel #19
0
 def __pow__(self, other):
     if not is_integer(other):
         return NotImplemented
     n, d = self.tf
     if other > 0:
         return LinearSystem(normalize(n**other, d**other), self.analog)
     elif other < 0:
         return LinearSystem(normalize(d**-other, n**-other), self.analog)
     else:
         assert other == 0
         return LinearSystem(1., self.analog)
Beispiel #20
0
def BoxFilter(width, normalized=True):
    """A discrete box-filter with a given ``width``, and optionally unit area.

    This filter is also known as a "box blur", and has the effect of
    smoothing out the input signal by taking its rolling mean over a finite
    number of time-steps. Its properties are qualitatively similar to the
    continuous-time :func:`.Lowpass`.

    Parameters
    ----------
    width : ``integer``
        Width of the box-filter (in time-steps).
    normalized : ``boolean``, optional
        If ``True``, then the height of the box-filter is ``1/width``,
        otherwise ``1``. Defaults to ``True``.

    Returns
    -------
    sys : :class:`.LinearSystem`
        Digital system implementing the box-filter.

    See Also
    --------
    :attr:`.z`
    :func:`.Lowpass`

    Examples
    --------
    Simulate a Nengo network using a box filter of 10 ms for a synapse:

    >>> from nengolib.synapses import BoxFilter
    >>> import nengo
    >>> with nengo.Network() as model:
    >>>     stim = nengo.Node(output=lambda _: np.random.randn(1))
    >>>     p_stim = nengo.Probe(stim)
    >>>     p_box = nengo.Probe(stim, synapse=BoxFilter(10))
    >>> with nengo.Simulator(model) as sim:
    >>>     sim.run(.1)

    >>> import matplotlib.pyplot as plt
    >>> plt.step(sim.trange(), sim.data[p_stim], label="Noisy Input", alpha=.5)
    >>> plt.step(sim.trange(), sim.data[p_box], label="Box-Filtered")
    >>> plt.xlabel("Time (s)")
    >>> plt.legend()
    >>> plt.show()
    """

    if not is_integer(width) or width <= 0:
        raise ValueError("width (%s) must be positive integer" % (width, ))
    den = DiscreteDelay(width - 1)
    amplitude = 1. / width if normalized else 1.
    # 1 + 1/z + ... + 1/z^(steps) = (z^steps + z^(steps-1) + ... + 1)/z^steps
    return amplitude * sum(z**k for k in range(width)) * den
Beispiel #21
0
 def sample(self, num, d=None, rng=np.random):
     num, d = self._sample_shape(num, d)
     if d == 1:
         # Tile the points optimally. TODO: refactor
         return np.linspace(1./num, 1, num)[:, None]
     if d is None or not is_integer(d) or d < 1:
         # TODO: this should be raised when the ensemble is created
         raise ValueError("d (%d) must be positive integer" % d)
     if d > 40:
         warnings.warn("i4_sobol_generate does not support d > 40; "
                       "falling back to monte-carlo method", UserWarning)
         return np.random.uniform(size=(num, d))
     return i4_sobol_generate(d, num, skip=0)
Beispiel #22
0
def DiscreteDelay(steps):
    """A discrete (pure) time-delay: ``z**-steps``.

    Also equivalent to ``(~z)**steps`` or ``1/z**steps``.

    Parameters
    ----------
    steps : ``integer``
        Number of time-steps to delay the input signal.

    Returns
    -------
    sys : :class:`.LinearSystem`
        Digital filter implementing the pure delay exactly.

    See Also
    --------
    :attr:`.z`
    :func:`.PadeDelay`

    Notes
    -----
    A single step of the delay will be removed if using the ``filt`` method.
    This is done for subtle reasons of consistency with Nengo.
    The correct delay will appear when passed to :class:`nengo.Connection`.

    Examples
    --------
    Simulate a Nengo network using a discrete delay of half a second for a
    synapse:

    >>> from nengolib.synapses import DiscreteDelay
    >>> import nengo
    >>> with nengo.Network() as model:
    >>>     stim = nengo.Node(output=lambda t: np.sin(2*np.pi*t))
    >>>     p_stim = nengo.Probe(stim)
    >>>     p_delay = nengo.Probe(stim, synapse=DiscreteDelay(500))
    >>> with nengo.Simulator(model) as sim:
    >>>     sim.run(1.)

    >>> import matplotlib.pyplot as plt
    >>> plt.plot(sim.trange(), sim.data[p_stim], label="Stimulus")
    >>> plt.plot(sim.trange(), sim.data[p_delay], label="Delayed")
    >>> plt.xlabel("Time (s)")
    >>> plt.legend()
    >>> plt.show()
    """

    if not is_integer(steps) or steps < 0:
        raise ValueError("steps (%s) must be non-negative integer" % (steps, ))
    return z**-steps
Beispiel #23
0
 def __init__(self, data, rng=None):
     if is_integer(data):
         if data < 1:
             raise Exception("number of dimensions must be a positive int")
         self.randomize(data, rng=rng)
     else:
         try:
             len(data)
         except:
             raise Exception("Must specify either the data or the length "
                             "for a SemanticPointer.")
         self.v = np.array(data, dtype=float)
         if len(self.v.shape) != 1:
             raise Exception("data must be a vector")
Beispiel #24
0
 def sample(self, n, d=1, rng=np.random):
     """Samples ``n`` points in ``d`` dimensions."""
     if d == 1:
         # Tile the points optimally. TODO: refactor
         return np.linspace(1. / n, 1, n)[:, None]
     if d is None or not is_integer(d) or d < 1:
         # TODO: this should be raised when the ensemble is created
         raise ValueError("d (%d) must be positive integer" % d)
     if d > 40:
         warnings.warn(
             "i4_sobol_generate does not support d > 40; "
             "falling back to Monte Carlo method", UserWarning)
         return rng.uniform(size=(n, d))
     return i4_sobol_generate(d, n, skip=0)
Beispiel #25
0
def Highpass(tau, order=1):
    """A differentiated lowpass of given order: ``(tau*s/(tau*s + 1))**order``.

    Equivalent to differentiating the input, scaling by ``tau``,
    lowpass filtering with time-constant ``tau``, and finally repeating
    this ``order`` times. The lowpass filter is required to make this causal.

    Parameters
    ----------
    tau : ``float``
        Time-constant of the lowpass filter, and highpass gain.
    order : ``integer``, optional
        Dimension of the resulting linear system. Defaults to ``1``.

    Returns
    -------
    sys : :class:`.LinearSystem`
        Highpass filter with time-constant ``tau`` and dimension ``order``.

    See Also
    --------
    :func:`.Lowpass`
    :attr:`.s`

    Examples
    --------
    >>> from nengolib.synapses import Highpass

    Evaluate the highpass in the frequency domain with a time-constant of 10 ms
    and with a variety of orders:

    >>> tau = 1e-2
    >>> orders = list(range(1, 9))
    >>> freqs = np.linspace(0, 50, 100)  # to evaluate

    >>> import matplotlib.pyplot as plt
    >>> plt.title(r"$\\tau=%s$" % tau)
    >>> for order in orders:
    >>>     sys = Highpass(tau, order)
    >>>     assert len(sys) == order
    >>>     plt.plot(freqs, np.abs(sys.evaluate(freqs)),
    >>>              label=r"order=%s" % order)
    >>> plt.xlabel("Frequency (Hz)")
    >>> plt.legend()
    >>> plt.show()
    """

    if order < 1 or not is_integer(order):
        raise ValueError("order (%s) must be integer >= 1" % order)
    return (tau * s * Lowpass(tau))**order
Beispiel #26
0
 def __init__(self, data, rng=None):
     if is_integer(data):
         if data < 1:
             raise Exception("number of dimensions must be a positive int")
         self.randomize(data, rng=rng)
     else:
         try:
             len(data)
         except:
             raise Exception("Must specify either the data or the length "
                             "for a SemanticPointer.")
         self.v = np.array(data, dtype=float)
         if len(self.v.shape) != 1:
             raise Exception("data must be a vector")
Beispiel #27
0
    def coerce(self, instance, value):
        value = super(VocabularyOrDimParam, self).coerce(instance, value)

        if value is not None:
            if is_integer(value):
                if value < 1:
                    raise ValidationError(
                        "Vocabulary dimensionality must be at least 1.",
                        attr=self.name, obj=instance)
                value = instance.vocabs.get_or_create(value)
            elif not isinstance(value, Vocabulary):
                raise ValidationError(
                    "Must be of type 'Vocabulary' or an integer (got type %r)."
                    % type(value).__name__, attr=self.name, obj=instance)
        return value
Beispiel #28
0
    def __getitem__(self, item):
        """Index or slice into array"""
        if not isinstance(item, tuple):
            item = (item, )

        if not all(is_integer(i) or isinstance(i, slice) for i in item):
            raise SignalError("Can only index or slice into signals")

        if all(map(is_integer, item)):
            # turn one index into slice to get a view from numpy
            item = item[:-1] + (slice(item[-1], item[-1] + 1), )

        return Signal(self._initial_value[item],
                      name="%s[%s]" % (self.name, item),
                      base=self.base)
Beispiel #29
0
    def __getitem__(self, item):
        """Index or slice into array"""
        if not isinstance(item, tuple):
            item = (item,)

        if not all(is_integer(i) or isinstance(i, slice) for i in item):
            raise SignalError("Can only index or slice into signals")

        if all(map(is_integer, item)):
            # turn one index into slice to get a view from numpy
            item = item[:-1] + (slice(item[-1], item[-1]+1),)

        return Signal(self._initial_value[item],
                      name="%s[%s]" % (self.name, item),
                      base=self.base)
Beispiel #30
0
    def __init__(self, data, rng=None):
        if is_integer(data):
            if data < 1:
                raise ValidationError("Number of dimensions must be a "
                                      "positive int", attr='data', obj=self)

            self.randomize(data, rng=rng)
        else:
            try:
                len(data)
            except:
                raise ValidationError(
                    "Must specify either the data or the length for a "
                    "SemanticPointer.", attr='data', obj=self)
            self.v = np.array(data, dtype=float)
            if len(self.v.shape) != 1:
                raise ValidationError("'data' must be a vector", 'data', self)
Beispiel #31
0
    def __init__(self, dimensions, randomize=True, unitary=False, max_similarity=0.1, include_pairs=False, rng=None):

        if not is_integer(dimensions):
            raise TypeError("dimensions must be an integer")
        if dimensions < 1:
            raise ValueError("dimensions must be positive")
        self.dimensions = dimensions
        self.randomize = randomize
        self.unitary = unitary
        self.max_similarity = max_similarity
        self.pointers = {}
        self.keys = []
        self.key_pairs = None
        self.vectors = np.zeros((0, dimensions), dtype=float)
        self.vector_pairs = None
        self._include_pairs = None
        self.include_pairs = include_pairs
        self._identity = None
        self.rng = rng
Beispiel #32
0
    def __getitem__(self, item):
        """Index or slice into array"""
        if item is Ellipsis or (
                isinstance(item, slice) and item == slice(None)):
            return self

        if not isinstance(item, tuple):
            item = (item,)

        if not all(is_integer(i) or isinstance(i, slice) for i in item):
            raise SignalError("Can only index or slice into signals")

        if all(map(is_integer, item)):
            # turn one index into slice to get a view from numpy
            item = item[:-1] + (slice(item[-1], item[-1]+1),)

        view = self._initial_value[item]
        offset = (npext.array_offset(view)
                  - npext.array_offset(self._initial_value))
        return Signal(view, name="%s[%s]" % (self.name, item),
                      base=self.base, offset=offset)
Beispiel #33
0
    def __init__(self, dimensions, randomize=True, unitary=False,
                 max_similarity=0.1, include_pairs=False, rng=None):

        if not is_integer(dimensions) or dimensions < 1:
            raise ValidationError("dimensions must be a positive integer",
                                  attr='dimensions', obj=self)
        self.dimensions = dimensions
        self.randomize = randomize
        self.unitary = unitary
        self.max_similarity = max_similarity
        self.pointers = {}
        self.keys = []
        self.key_pairs = None
        self.vectors = np.zeros((0, dimensions), dtype=float)
        self.vector_pairs = None
        self._include_pairs = None
        self.include_pairs = include_pairs
        self._identity = None
        self.rng = rng
        self.readonly = False
        self.parent = None
Beispiel #34
0
def one_hot_from_labels(labels, classes=None, dtype=float):
    """Turn integer labels into a one-hot encoding.

    Parameters
    ==========
    labels : (n,) array
        Labels to turn into one-hot encoding.
    classes : int or (n_classes,) array (optional)
        Classes for encoding. If integer and ``labels.dtype`` is integer, this
        is the number of classes in the encoding. If iterable, this is the
        list of classes to place in the one-hot (must be a superset of the
        unique elements in ``labels``).
    dtype : dtype (optional)
        Data type of returned one-hot encoding (defaults to ``float``).
    """
    assert labels.ndim == 1
    n = labels.shape[0]

    if np.issubdtype(labels.dtype, np.integer) and (classes is None
                                                    or is_integer(classes)):
        index = labels
        index_min, index_max = index.min(), index.max()
        n_classes = (index_max + 1) if classes is None else classes
        assert index_min >= 0
        assert index_max < n_classes
    else:
        if classes is not None:
            assert is_iterable(classes)
            assert set(np.unique(labels)).issubset(classes)
        classes = np.unique(labels) if classes is None else classes
        n_classes = len(classes)

        c_index = np.argsort(classes)
        c_sorted = classes[c_index]
        index = c_index[np.searchsorted(c_sorted, labels)]

    y = np.zeros((n, n_classes), dtype=dtype)
    y[np.arange(n), index] = 1
    return y
Beispiel #35
0
    def __init__(self, obj, key=slice(None)):
        self.obj = obj
        if is_integer(key):
            # single slices of the form [i] should be cast into
            # slice objects for convenience
            if key == -1:
                # special case because slice(-1, 0) gives the empty list
                key = slice(key, None)
            else:
                key = slice(key, key+1)
        self.slice = key

        # Node.size_in != size_out, so one of these can be invalid
        try:
            self.size_in = np.arange(self.obj.size_in)[self.slice].size
        except IndexError:
            self.size_in = None
        try:
            self.size_out = np.arange(self.obj.size_out)[self.slice].size
        except IndexError:
            self.size_out = None
        if self.size_in is None and self.size_out is None:
            raise ValidationError("Invalid slice '%s' of %s"
                                  % (self.slice, self.obj), attr='key')
Beispiel #36
0
def build_connection(conn, model):  # noqa: C901
    rng = np.random.RandomState(model.next_seed())

    model.sig_in[conn] = model.sig_out[conn.pre]
    model.sig_out[conn] = model.sig_in[conn.post]

    decoders = None
    eval_points = None
    solver_info = None
    transform = np.array(conn.transform_full, dtype=np.float64)

    # Figure out the signal going across this connection
    if (isinstance(conn.pre, nengo.Ensemble)
            and isinstance(conn.pre.neurons, nengo.Direct)):
        # Decoded connection in directmode
        if conn.function is None:
            signal = model.sig_in[conn]
        else:
            sig_in, signal = build_pyfunc(fn=conn.function,
                                          t_in=False,
                                          n_in=model.sig_in[conn].size,
                                          n_out=conn.dimensions,
                                          label=conn.label,
                                          model=model)
            model.operators.append(
                DotInc(model.sig_in[conn],
                       Signal(1.0, name="1"),
                       sig_in,
                       tag="%s input" % conn.label))
    elif isinstance(conn.pre, nengo.Ensemble):
        # Normal decoded connection
        encoders = model.params[conn.pre].encoders
        gain = model.params[conn.pre.neurons].gain
        bias = model.params[conn.pre.neurons].bias

        eval_points = conn.eval_points
        if eval_points is None:
            eval_points = npext.array(model.params[conn.pre].eval_points,
                                      min_dims=2)
        elif is_integer(eval_points):
            eval_points = pick_eval_points(ens=conn.pre,
                                           n_points=eval_points,
                                           rng=rng)
        else:
            eval_points = npext.array(eval_points, min_dims=2)

        x = np.dot(eval_points, encoders.T / conn.pre.radius)
        activities = model.dt * conn.pre.neurons.rates(x, gain, bias)
        if np.count_nonzero(activities) == 0:
            raise RuntimeError(
                "In '%s', for '%s', 'activites' matrix is all zero. "
                "This is because no evaluation points fall in the firing "
                "ranges of any neurons." % (str(conn), str(conn.pre)))

        if conn.function is None:
            targets = eval_points
        else:
            targets = np.zeros((len(eval_points), conn.function_size))
            for i, ep in enumerate(eval_points):
                targets[i] = conn.function(ep)

        if conn.weight_solver is not None:
            if conn.decoder_solver is not None:
                raise ValueError("Cannot specify both 'weight_solver' "
                                 "and 'decoder_solver'.")

            # account for transform
            targets = np.dot(targets, transform.T)
            transform = np.array(1., dtype=np.float64)

            decoders, solver_info = conn.weight_solver(
                activities,
                targets,
                rng=rng,
                E=model.params[conn.post].scaled_encoders.T)
            model.sig_out[conn] = model.sig_in[conn.post.neurons]
            signal_size = model.sig_out[conn].size
        else:
            solver = (conn.decoder_solver if conn.decoder_solver is not None
                      else nengo.decoders.lstsq_L2nz)
            decoders, solver_info = solver(activities, targets, rng=rng)
            signal_size = conn.dimensions

        # Add operator for decoders and filtering
        decoders = decoders.T
        if conn.synapse is not None and conn.synapse > model.dt:
            decay = decay_coef(pstc=conn.synapse, dt=model.dt)
            decoder_signal = Signal(decoders * (1.0 - decay),
                                    name="%s.decoders * (1 - decay)" %
                                    conn.label)
        else:
            decoder_signal = Signal(decoders, name="%s.decoders" % conn.label)
            decay = 0

        signal = Signal(np.zeros(signal_size), name=conn.label)
        model.operators.append(
            ProdUpdate(decoder_signal,
                       model.sig_in[conn],
                       Signal(decay, name="decay"),
                       signal,
                       tag="%s decoding" % conn.label))
    else:
        # Direct connection
        signal = model.sig_in[conn]

    # Add operator for filtering (in the case filter wasn't already
    # added, when pre.neurons is a non-direct Ensemble)
    if decoders is None and conn.synapse is not None:
        # Note: we add a filter here even if synapse < dt,
        # in order to avoid cycles in the op graph. If the filter
        # is explicitly set to None (e.g. for a passthrough node)
        # then cycles can still occur.
        signal = filtered_signal(signal, conn.synapse, model=model)

    if conn.modulatory:
        # Make a new signal, effectively detaching from post
        model.sig_out[conn] = Signal(np.zeros(model.sig_out[conn].size),
                                     name="%s.mod_output" % conn.label)
        # Add reset operator?
        # TODO: add unit test

    # Add operator for transform
    if isinstance(conn.post, nengo.objects.Neurons):
        if not model.has_built(conn.post):
            # Since it hasn't been built, it wasn't added to the Network,
            # which is most likely because the Neurons weren't associated
            # with an Ensemble.
            raise RuntimeError("Connection '%s' refers to Neurons '%s' "
                               "that are not a part of any Ensemble." %
                               (conn, conn.post))
        transform *= model.params[conn.post].gain[:, np.newaxis]

    model.operators.append(
        DotInc(Signal(transform, name="%s.transform" % conn.label),
               signal,
               model.sig_out[conn],
               tag=conn.label))

    # Set up probes
    for probe in conn.probes["signal"]:
        Builder.build(probe, dimensions=model.sig_out[conn].size, model=model)

    model.params[conn] = BuiltConnection(decoders=decoders,
                                         eval_points=eval_points,
                                         transform=transform,
                                         solver_info=solver_info)
Beispiel #37
0
    def build_connection(self, conn):
        dt = self.model.dt
        rng = np.random.RandomState(self.next_seed())

        self.model.sig_in[conn] = self.model.sig_out[conn.pre]
        self.model.sig_out[conn] = self.model.sig_in[conn.post]

        decoders = None
        eval_points = None
        transform = np.array(conn.transform_full, dtype=np.float64)

        # Figure out the signal going across this connection
        if (isinstance(conn.pre, nengo.Ensemble)
                and isinstance(conn.pre.neurons, nengo.Direct)):
            # Decoded connection in directmode
            if conn.function is None:
                signal = self.model.sig_in[conn]
            else:
                sig_in, signal = self.build_pyfunc(
                    fn=conn.function,
                    t_in=False,
                    n_in=self.model.sig_in[conn].size,
                    n_out=conn.dimensions,
                    label=conn.label)
                self.model.operators.append(DotInc(
                    self.model.sig_in[conn],
                    Signal(1.0, name="1"),
                    sig_in,
                    tag="%s input" % conn.label))
        elif isinstance(conn.pre, nengo.Ensemble):
            # Normal decoded connection
            encoders = self.built[conn.pre].encoders
            gain = self.built[conn.pre.neurons].gain
            bias = self.built[conn.pre.neurons].bias

            eval_points = conn.eval_points
            if eval_points is None:
                eval_points = npext.array(
                    self.built[conn.pre].eval_points, min_dims=2)
            elif is_integer(eval_points):
                eval_points = self.generate_eval_points(
                    ens=conn.pre, n_points=eval_points, rng=rng)
            else:
                eval_points = npext.array(eval_points, min_dims=2)

            x = np.dot(eval_points, encoders.T / conn.pre.radius)
            activities = dt * conn.pre.neurons.rates(x, gain, bias)
            if np.count_nonzero(activities) == 0:
                raise RuntimeError(
                    "In '%s', for '%s', 'activities' matrix is all zero. "
                    "This is because no evaluation points fall in the firing "
                    "ranges of any neurons." % (str(conn), str(conn.pre)))

            if conn.function is None:
                targets = eval_points
            else:
                targets = npext.array(
                    [conn.function(ep) for ep in eval_points], min_dims=2)

            if conn.weight_solver is not None:
                if conn.decoder_solver is not None:
                    raise ValueError("Cannot specify both 'weight_solver' "
                                     "and 'decoder_solver'.")

                # account for transform
                targets = np.dot(targets, transform.T)
                transform = np.array(1., dtype=np.float64)

                decoders = conn.weight_solver(
                    activities, targets, rng=rng,
                    E=self.built[conn.post].scaled_encoders.T)
                self.model.sig_out[conn] = self.model.sig_in[
                    conn.post.neurons]
                signal_size = self.model.sig_out[conn].size
            else:
                solver = (conn.decoder_solver if conn.decoder_solver is
                          not None else nengo.decoders.lstsq_L2nz)
                decoders = solver(activities, targets, rng=rng)
                signal_size = conn.dimensions

            # Add operator for decoders and filtering
            decoders = decoders.T
            if conn.filter is not None and conn.filter > dt:
                o_coef, n_coef = self.filter_coefs(pstc=conn.filter, dt=dt)
                decoder_signal = Signal(
                    decoders * n_coef,
                    name="%s.decoders * n_coef" % conn.label)
            else:
                decoder_signal = Signal(decoders,
                                        name="%s.decoders" % conn.label)
                o_coef = 0

            signal = Signal(np.zeros(signal_size), name=conn.label)
            self.model.operators.append(ProdUpdate(
                decoder_signal,
                self.model.sig_in[conn],
                Signal(o_coef, name="o_coef"),
                signal,
                tag="%s decoding" % conn.label))
        else:
            # Direct connection
            signal = self.model.sig_in[conn]

        # Add operator for filtering (in the case filter wasn't already
        # added, when pre.neurons is a non-direct Ensemble)
        if decoders is None and conn.filter is not None:
            # Note: we add a filter here even if filter < dt,
            # in order to avoid cycles in the op graph. If the filter
            # is explicitly set to None (e.g. for a passthrough node)
            # then cycles can still occur.
            signal = self.filtered_signal(signal, conn.filter)

        if conn.modulatory:
            # Make a new signal, effectively detaching from post
            self.model.sig_out[conn] = Signal(
                np.zeros(self.model.sig_out[conn].size),
                name="%s.mod_output" % conn.label)
            # Add reset operator?
            # TODO: add unit test

        # Add operator for transform
        if isinstance(conn.post, nengo.objects.Neurons):
            if not self.has_built(conn.post):
                # Since it hasn't been built, it wasn't added to the Network,
                # which is most likely because the Neurons weren't associated
                # with an Ensemble.
                raise RuntimeError("Connection '%s' refers to Neurons '%s' "
                                   "that are not a part of any Ensemble." % (
                                       conn, conn.post))
            transform *= self.built[conn.post].gain[:, np.newaxis]

        self.model.operators.append(
            DotInc(Signal(transform, name="%s.transform" % conn.label),
                   signal,
                   self.model.sig_out[conn],
                   tag=conn.label))

        # Set up probes
        for probe in conn.probes["signal"]:
            self.build(probe, dimensions=self.model.sig_out[conn].size)

        return BuiltConnection(decoders=decoders,
                               eval_points=eval_points,
                               transform=transform)
Beispiel #38
0
    def build_ensemble(self, ens):
        # Create random number generator
        seed = self.next_seed() if ens.seed is None else ens.seed
        rng = np.random.RandomState(seed)

        # Generate eval points
        if ens.eval_points is None or is_integer(ens.eval_points):
            eval_points = self.generate_eval_points(
                ens=ens, n_points=ens.eval_points, rng=rng)
        else:
            eval_points = npext.array(
                ens.eval_points, dtype=np.float64, min_dims=2)

        # Set up signal
        self.model.sig_in[ens] = Signal(np.zeros(ens.dimensions),
                                        name="%s.signal" % ens.label)
        self.model.operators.append(Reset(self.model.sig_in[ens]))

        # Set up encoders
        if ens.encoders is None:
            if isinstance(ens.neurons, nengo.Direct):
                encoders = np.identity(ens.dimensions)
            else:
                sphere = dists.UniformHypersphere(ens.dimensions, surface=True)
                encoders = sphere.sample(ens.neurons.n_neurons, rng=rng)
        else:
            encoders = np.array(ens.encoders, dtype=np.float64)
            enc_shape = (ens.neurons.n_neurons, ens.dimensions)
            if encoders.shape != enc_shape:
                raise ShapeMismatch(
                    "Encoder shape is %s. Should be (n_neurons, dimensions); "
                    "in this case %s." % (encoders.shape, enc_shape))
            encoders /= npext.norm(encoders, axis=1, keepdims=True)

        # Determine max_rates and intercepts
        if isinstance(ens.max_rates, dists.Distribution):
            max_rates = ens.max_rates.sample(
                ens.neurons.n_neurons, rng=rng)
        else:
            max_rates = np.array(ens.max_rates)
        if isinstance(ens.intercepts, dists.Distribution):
            intercepts = ens.intercepts.sample(
                ens.neurons.n_neurons, rng=rng)
        else:
            intercepts = np.array(ens.intercepts)

        # Build the neurons
        if isinstance(ens.neurons, nengo.Direct):
            bn = self.build(ens.neurons, ens.dimensions)
        else:
            bn = self.build(ens.neurons, max_rates, intercepts)

        # Scale the encoders
        if isinstance(ens.neurons, nengo.Direct):
            scaled_encoders = encoders
        else:
            scaled_encoders = encoders * (bn.gain / ens.radius)[:, np.newaxis]

        # Create output signal, using built Neurons
        self.model.operators.append(DotInc(
            Signal(scaled_encoders, name="%s.scaled_encoders" % ens.label),
            self.model.sig_in[ens],
            self.model.sig_in[ens.neurons],
            tag="%s encoding" % ens.label))

        # Output is neural output
        self.model.sig_out[ens] = self.model.sig_out[ens.neurons]

        for probe in ens.probes["decoded_output"]:
            self.build(probe, dimensions=ens.dimensions)
        for probe in ens.probes["spikes"] + ens.probes["voltages"]:
            self.build(probe, dimensions=ens.neurons.n_neurons)

        return BuiltEnsemble(eval_points=eval_points,
                             encoders=encoders,
                             intercepts=intercepts,
                             max_rates=max_rates,
                             scaled_encoders=scaled_encoders)
Beispiel #39
0
def DiscreteDelay(steps):
    """Delays its input signal by a fixed number of timesteps."""
    if not is_integer(steps) or steps < 0:
        raise ValueError("steps (%s) must be non-negative integer" % (steps,))
    return z**(-steps)
Beispiel #40
0
 def validate(self, instance, num):
     if num is not None and not is_integer(num):
         raise ValidationError("Must be an integer; got '%s'" % num,
                               attr=self.name,
                               obj=instance)
     super(IntParam, self).validate(instance, num)
Beispiel #41
0
def Highpass(tau, order=1):
    """Differentiated lowpass, raised to a given power."""
    if order < 1 or not is_integer(order):
        raise ValueError("order (%s) must be integer >= 1" % order)
    num, den = map(np.poly1d, ([tau, 0], [tau, 1]))
    return LinearFilter(num**order, den**order)
Beispiel #42
0
 def add_spikes(self, ti, spike_idxs):
     assert is_integer(ti)
     ti = int(ti)
     assert ti > 0, "Spike times must be >= 1 (got %d)" % ti
     assert ti not in self.spikes
     self.spikes[ti] = spike_idxs
Beispiel #43
0
 def validate(self, instance, num):
     if num is not None and not is_integer(num):
         raise ValueError("Must be an integer; got '%s'" % num)
     super(IntParam, self).validate(instance, num)
Beispiel #44
0
 def coerce_defaults(self):
     if self.shape is None:
         return True
     return all(is_integer(dim) or dim in ('...', '*')
                for dim in self.shape)
Beispiel #45
0
 def coerce_defaults(self):
     return all(
         is_integer(dim) or dim in ('...', '*') for dim in self.shape)
Beispiel #46
0
def build_ensemble(ens, model):  # noqa: C901
    # Create random number generator
    seed = model.next_seed() if ens.seed is None else ens.seed
    rng = np.random.RandomState(seed)

    # Generate eval points
    if ens.eval_points is None or is_integer(ens.eval_points):
        eval_points = pick_eval_points(ens=ens,
                                       n_points=ens.eval_points,
                                       rng=rng)
    else:
        eval_points = npext.array(ens.eval_points,
                                  dtype=np.float64,
                                  min_dims=2)

    # Set up signal
    model.sig_in[ens] = Signal(np.zeros(ens.dimensions),
                               name="%s.signal" % ens.label)
    model.operators.append(Reset(model.sig_in[ens]))

    # Set up encoders
    if ens.encoders is None:
        if isinstance(ens.neurons, nengo.Direct):
            encoders = np.identity(ens.dimensions)
        else:
            sphere = dists.UniformHypersphere(ens.dimensions, surface=True)
            encoders = sphere.sample(ens.neurons.n_neurons, rng=rng)
    else:
        encoders = np.array(ens.encoders, dtype=np.float64)
        enc_shape = (ens.neurons.n_neurons, ens.dimensions)
        if encoders.shape != enc_shape:
            raise ShapeMismatch(
                "Encoder shape is %s. Should be (n_neurons, dimensions); "
                "in this case %s." % (encoders.shape, enc_shape))
        encoders /= npext.norm(encoders, axis=1, keepdims=True)

    # Determine max_rates and intercepts
    if isinstance(ens.max_rates, dists.Distribution):
        max_rates = ens.max_rates.sample(ens.neurons.n_neurons, rng=rng)
    else:
        max_rates = np.array(ens.max_rates)
    if isinstance(ens.intercepts, dists.Distribution):
        intercepts = ens.intercepts.sample(ens.neurons.n_neurons, rng=rng)
    else:
        intercepts = np.array(ens.intercepts)

    # Build the neurons
    if isinstance(ens.neurons, nengo.Direct):
        Builder.build(ens.neurons, ens.dimensions, model=model)
    else:
        Builder.build(ens.neurons, max_rates, intercepts, model=model)
    bn = model.params[ens.neurons]

    # Scale the encoders
    if isinstance(ens.neurons, nengo.Direct):
        scaled_encoders = encoders
    else:
        scaled_encoders = encoders * (bn.gain / ens.radius)[:, np.newaxis]

    # Create output signal, using built Neurons
    model.operators.append(
        DotInc(Signal(scaled_encoders, name="%s.scaled_encoders" % ens.label),
               model.sig_in[ens],
               model.sig_in[ens.neurons],
               tag="%s encoding" % ens.label))

    # Output is neural output
    model.sig_out[ens] = model.sig_out[ens.neurons]

    for probe in ens.probes["decoded_output"]:
        Builder.build(probe, dimensions=ens.dimensions, model=model)
    for probe in ens.probes["spikes"] + ens.probes["voltages"]:
        Builder.build(probe, dimensions=ens.neurons.n_neurons, model=model)

    model.params[ens] = BuiltEnsemble(eval_points=eval_points,
                                      encoders=encoders,
                                      intercepts=intercepts,
                                      max_rates=max_rates,
                                      scaled_encoders=scaled_encoders)
Beispiel #47
0
 def validate(self, instance, num):
     if num is not None and not is_integer(num):
         raise ValueError("Must be an integer; got '%s'" % num)
     super(IntParam, self).validate(instance, num)
Beispiel #48
0
 def validate(self, instance, num):
     if num is not None and not is_integer(num):
         raise ValidationError("Must be an integer; got '%s'" % num,
                               attr=self.name, obj=instance)
     super(IntParam, self).validate(instance, num)