Beispiel #1
0
def test_iterator():
    parser = NeonArgparser(__doc__)
    args = parser.parse_args()
    (X_train, y_train), (X_test, y_test), nclass = load_cifar10_imgs(path=args.data_dir)
    train = DataIterator(X_train, y_train, nclass=nclass, lshape=(3, 32, 32))
    test = DataIterator(X_test, y_test, nclass=nclass, lshape=(3, 32, 32))
    return run(args, train, test)
Beispiel #2
0
def test_iterator():
    print('Testing iterator based data loader')
    parser = NeonArgparser(__doc__)
    args = parser.parse_args()
    (X_train, y_train), (X_test, y_test), nclass = load_cifar10_imgs(path=args.data_dir)
    train = ArrayIterator(X_train, y_train, nclass=nclass, lshape=(3, 32, 32))
    test = ArrayIterator(X_test, y_test, nclass=nclass, lshape=(3, 32, 32))
    return run(args, train, test)
Beispiel #3
0
def get_data():
    """
    Download bilingual text dataset for Machine translation example.
    """

    # vocab_size and time_steps are hard coded here
    vocab_size = 16384
    time_steps = 20

    # download dataset
    url = 'http://www-lium.univ-lemans.fr/~schwenk/cslm_joint_paper/data/'
    filename = 'bitexts.tgz'
    size = 1313280000

    parser = NeonArgparser(__doc__)
    args = parser.parse_args(gen_be=False)
    data_dir = os.path.join(args.data_dir, 'nmt')

    _, filepath = Dataset._valid_path_append(data_dir, '', filename)
    if not os.path.exists(filepath):
        Dataset.fetch_dataset(url, filename, filepath, size)

    # extract selected datasets
    datafiles = dict()
    datafiles['un2000'] = ('un2000_pc34.en.gz', 'un2000_pc34.fr.gz')
    datafiles['europarl7'] = ('ep7_pc45.en.gz', 'ep7_pc45.fr.gz')

    extractpath = os.path.join(data_dir, 'bitexts.selected')
    with tarfile.open(filepath, 'r') as tar_ref:
        for dset, files in datafiles.items():
            datasetpath = os.path.join(data_dir, dset)
            # extract the files for dataset, if not already there
            for zipped in files:
                fname = '.'.join(zipped.split('.')[:-1])
                fpath = os.path.join(datasetpath, fname)
                if not os.path.exists(fpath):
                    gzpath = os.path.join(extractpath, zipped)
                    if not os.path.exists(gzpath):
                        select = [ti for ti in tar_ref if os.path.split(ti.name)[1] == zipped]
                        tar_ref.extractall(path=data_dir, members=select)
                    # get contents of gz files
                    if not os.path.exists(datasetpath):
                        os.makedirs(datasetpath)
                    with gzip.open(gzpath, 'r') as fin, open(fpath, 'w') as fout:
                        fout.write(fin.read())
                    os.remove(gzpath)

    if os.path.exists(extractpath):
        os.rmdir(extractpath)

    # process data and save to h5 file
    # loop through all datasets and get train and valid splits
    for dataset in datafiles.keys():

        s_vocab, t_vocab = create_h5py(data_dir, dataset, 'train',
                                       vocab_size=vocab_size, time_steps=time_steps)
        create_h5py(data_dir, dataset, 'valid', s_vocab=s_vocab, t_vocab=t_vocab,
                    time_steps=time_steps)
Beispiel #4
0
def test_loader():
    parser = NeonArgparser(__doc__)
    args = parser.parse_args()

    train_dir = os.path.join(args.data_dir, 'macrotrain')
    test_dir = os.path.join(args.data_dir, 'macrotest')
    write_batches(args, train_dir, trainimgs, 0)
    write_batches(args, test_dir, testimgs, 1)
    train = ImageLoader(set_name='train', do_transforms=False, inner_size=32,
                        repo_dir=train_dir)
    test = ImageLoader(set_name='validation', do_transforms=False, inner_size=32,
                       repo_dir=test_dir)
    err = run(args, train, test)
    return err
def main():
    # parse the command line arguments
    parser = NeonArgparser(__doc__)

    args = parser.parse_args()

    logger = logging.getLogger()
    logger.setLevel(args.log_thresh)

    # Set up batch iterator for training images
    train = ImgMaster(repo_dir="spectroDataTmp", set_name="train", inner_size=400, subset_pct=100)
    val = ImgMaster(
        repo_dir="spectroDataTmp", set_name="validation", inner_size=400, subset_pct=100, do_transforms=False
    )
    test = ImgMaster(
        repo_dir="spectroTestDataTmp", set_name="validation", inner_size=400, subset_pct=100, do_transforms=False
    )

    train.init_batch_provider()
    test.init_batch_provider()

    print "Constructing network..."
    model = constuct_network()

    model.load_weights(args.model_file)

    # Optimizer
    opt = Adadelta()

    # configure callbacks
    valmetric = TopKMisclassification(k=5)
    callbacks = Callbacks(model, train, eval_set=val, metric=valmetric, **args.callback_args)

    cost = GeneralizedCost(costfunc=CrossEntropyMulti())

    # flag = input("Press Enter if you want to begin training process.")
    print "Training network..."
    print args.epochs
    model.fit(train, optimizer=opt, num_epochs=args.epochs, cost=cost, callbacks=callbacks)
    mets = model.eval(test, metric=valmetric)

    print "Validation set metrics:"
    print "LogLoss: %.2f, Accuracy: %.1f %%0 (Top-1), %.1f %% (Top-5)" % (
        mets[0],
        (1.0 - mets[1]) * 100,
        (1.0 - mets[2]) * 100,
    )
    test.exit_batch_provider()
    train.exit_batch_provider()
Beispiel #6
0
def main():
    # parse the command line arguments
    parser = NeonArgparser(__doc__)
    parser.add_argument('--output_path', required=True,
                        help='Output path used when training model')
    parser.add_argument('--w2v_path', required=False, default=None,
                        help='Path to GoogleNews w2v file for voab expansion.')
    parser.add_argument('--eval_data_path', required=False, default='./SICK_data',
                        help='Path to the SICK dataset for evaluating semantic relateness')
    parser.add_argument('--max_vocab_size', required=False, default=1000000,
                        help='Limit the vocabulary expansion to fit in GPU memory')
    parser.add_argument('--subset_pct', required=False, default=100,
                        help='subset of training dataset to use (use to retreive \
                        preprocessed data from training)')
    args = parser.parse_args(gen_be=True)

    # load vocab file from training
    _, vocab_file = load_data(args.data_dir, output_path=args.output_path,
                              subset_pct=float(args.subset_pct))
    vocab, _, _ = load_obj(vocab_file)

    vocab_size = len(vocab)
    neon_logger.display("\nVocab size from the dataset is: {}".format(vocab_size))

    index_from = 2  # 0: padding 1: oov
    vocab_size_layer = vocab_size + index_from
    max_len = 30

    # load trained model
    model_dict = load_obj(args.model_file)

    # Vocabulary expansion trick needs to pass the correct vocab set to evaluate (for tokenization)
    if args.w2v_path:
        neon_logger.display("Performing Vocabulary Expansion... Loading W2V...")
        w2v_vocab, w2v_vocab_size = get_w2v_vocab(args.w2v_path,
                                                  int(args.max_vocab_size), cache=True)

        vocab_size_layer = w2v_vocab_size + index_from
        model = load_sent_encoder(model_dict, expand_vocab=True, orig_vocab=vocab,
                                  w2v_vocab=w2v_vocab, w2v_path=args.w2v_path, use_recur_last=True)
        vocab = w2v_vocab
    else:
        # otherwise stick with original vocab size used to train the model
        model = load_sent_encoder(model_dict, use_recur_last=True)

    model.initialize(dataset=(max_len, 1))

    evaluate(model, vocab=vocab, data_path=args.eval_data_path, evaltest=True,
             vocab_size_layer=vocab_size_layer)
def main():
	# parse the command line arguments
	parser = NeonArgparser(__doc__)

	args = parser.parse_args()

	logger = logging.getLogger()
	logger.setLevel(args.log_thresh)

	#Set up batch iterator for training images
	print "Setting up data batch loaders..."
	train = ImgMaster(repo_dir='dataTmp', set_name='train', inner_size=120, subset_pct=100)
	val = ImgMaster(repo_dir='dataTmp', set_name='train', inner_size=120, subset_pct=100, do_transforms=False)
	test = ImgMaster(repo_dir='dataTestTmp', set_name='train', inner_size=120, subset_pct=100, do_transforms=False)

	train.init_batch_provider()
	val.init_batch_provider()
	test.init_batch_provider()

	print "Constructing network..."
	#Create AlexNet architecture
	model = constuct_network()

	#model.load_weights(args.model_file)

	# drop weights LR by 1/250**(1/3) at epochs (23, 45, 66), drop bias LR by 1/10 at epoch 45
	weight_sched = Schedule([22, 44, 65, 90, 97], (1/250.)**(1/3.))
	opt_gdm = GradientDescentMomentum(0.01, 0.9, wdecay=0.005, schedule=weight_sched)
	opt_biases = GradientDescentMomentum(0.04, 1.0, schedule=Schedule([130],.1))
	opt = MultiOptimizer({'default': opt_gdm, 'Bias': opt_biases})

	# configure callbacks
	valmetric = TopKMisclassification(k=5)
	callbacks = Callbacks(model, train, eval_set=val, metric=valmetric, **args.callback_args)

	cost = GeneralizedCost(costfunc=CrossEntropyMulti())

	#flag = input("Press Enter if you want to begin training process.")
	print "Training network..."
	model.fit(train, optimizer=opt, num_epochs=args.epochs, cost=cost, callbacks=callbacks)
	mets = model.eval(test, metric=valmetric)

	print 'Validation set metrics:'
	print 'LogLoss: %.2f, Accuracy: %.1f %%0 (Top-1), %.1f %% (Top-5)' % (mets[0], 
																		(1.0-mets[1])*100,
																		(1.0-mets[2])*100)
	test.exit_batch_provider()
	val.exit_batch_provider()
	train.exit_batch_provider()
Beispiel #8
0
def test_loader():
    print('Testing image loader')
    parser = NeonArgparser(__doc__)
    args = parser.parse_args()

    train_archive = os.path.join(args.data_dir, traindir + '-ingested')
    test_archive = os.path.join(args.data_dir, testdir + '-ingested')
    write_batches(args, train_archive, traindir, 0)
    write_batches(args, test_archive, testdir, 1)
    train = ImageLoader(set_name='train', do_transforms=False, inner_size=32,
                        scale_range=0, repo_dir=train_archive)
    test = ImageLoader(set_name='validation', do_transforms=False, inner_size=32,
                       scale_range=0, repo_dir=test_archive)
    err = run(args, train, test)
    return err
Beispiel #9
0
def test_loader():
    print('Testing generic data loader')
    parser = NeonArgparser(__doc__)
    args = parser.parse_args()

    train_path = os.path.join(args.data_dir, traindir + '-ingested')
    test_path = os.path.join(args.data_dir, testdir + '-ingested')

    params = ImageParams(channel_count=3, height=32, width=32)
    common = dict(media_params=params, target_size=1, nclasses=10)
    train = DataLoader('train', repo_dir=os.path.join(args.data_dir, 'train'),
                       **common)
    test = DataLoader('test', repo_dir=os.path.join(args.data_dir, 'test'),
                      **common)
    err = run(args, train, test)
    return err
Beispiel #10
0
def get_args_and_hyperparameters():
    parser = NeonArgparser(__doc__)
    args = parser.parse_args(gen_be=False)
    
    # Override save path if None
    if args.save_path is None:
        args.save_path = 'frcn_alexnet.pickle'
    
    if args.callback_args['save_path'] is None:
        args.callback_args['save_path'] = args.save_path
    
    if args.callback_args['serialize'] is None:
        args.callback_args['serialize'] = min(args.epochs, 10)
    
    
    # hyperparameters
    args.batch_size = 64
    hyper_params = lambda: None
    hyper_params.use_pre_trained_weights = True # If true, load pre-trained weights to the model
    hyper_params.max_train_imgs = 5000 # Make this smaller in small trial runs to save time
    hyper_params.max_test_imgs = 5000 # Make this smaller in small trial runs to save time
    hyper_params.num_epochs = args.epochs
    hyper_params.samples_per_batch = args.batch_size # The mini-batch size
    # The number of multi-scale samples to make for each input image. These
    # samples are then fed into the network in multiple minibatches.
    hyper_params.samples_per_img = hyper_params.samples_per_batch*7 
    hyper_params.frcn_fine_tune = False
    hyper_params.shuffle = True
    if hyper_params.use_pre_trained_weights:
        # This will typically train in 10-15 epochs. Use a small learning rate
        # and quickly reduce every 5-10 epochs. Use a high momentum since we
        # are close to the minima.
        s = 1e-4
        hyper_params.learning_rate_scale = s
        hyper_params.learning_rate_sched = Schedule(step_config=[15, 20], 
                                        change=[0.1*s, 0.01*s])
        hyper_params.momentum = 0.9
    else: # need to be less aggressive with reducing learning rate if the model is not pre-trained
        s = 1e-2
        hyper_params.learning_rate_scale = 1e-2
        hyper_params.learning_rate_sched = Schedule(step_config=[8, 14, 18, 20], 
                                        change=[0.5*s, 0.1*s, 0.05*s, 0.01*s])
        hyper_params.momentum = 0.1
    hyper_params.class_score_threshold = 0.000001
    hyper_params.score_exponent = 5
    hyper_params.shuffle = True
    return args, hyper_params
Beispiel #11
0
def run_once(web_input):
    """
    Run forward pass for a single input. Receives input vector from the web form.
    """

    parser = NeonArgparser(__doc__)
    
    args = parser.parse_args()
    
    num_feat = 4
    
    npzfile = np.load('./model/homeapp_preproc.npz')
    mean = npzfile['mean']
    std = npzfile['std']
    mean = np.reshape(mean, (1,mean.shape[0]))
    std = np.reshape(std, (1,std.shape[0]))
    
    # Reloading saved model
    mlp=Model("./model/homeapp_model.prm")
    
    # Horrible terrible hack that should never be needed :-(
    NervanaObject.be.bsz = 1
    
    # Actual: 275,000 Predicted: 362,177 
    #web_input = np.array([51.2246169879,-1.48577399748,223.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,1.0])
    # Actual 185,000 Predicted: 244,526
    #web_input = np.array([51.4395375168,-1.07174234072,5.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,1.0])
    # Actual 231,500 Predicted 281,053
    web_input = np.array([52.2010084131,-2.18181259148,218.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,1.0])
    web_input = np.reshape(web_input, (1,web_input.shape[0]))
    
    web_input[:,:num_feat-1] -= mean[:,1:num_feat]
    web_input[:,:num_feat-1] /= std[:,1:num_feat]
    
    web_test_set = ArrayIterator(X=web_input, make_onehot=False)
    
    web_output = mlp.get_outputs(web_test_set)
    
    #Rescale the output
    web_output *= std[:,0]
    web_output += mean[:,0]
    
    return web_output[0]
def main():
	# parse the command line arguments
	parser = NeonArgparser(__doc__)

	args = parser.parse_args()

	logger = logging.getLogger()
	logger.setLevel(args.log_thresh)

	#Set up batch iterator for training images
	train = ImgMaster(repo_dir='dataTmp_optFlow_BW', set_name='train', inner_size=240, subset_pct=100)
	val = ImgMaster(repo_dir='dataTmp_optFlow_BW', set_name='train', inner_size=240, subset_pct=100, do_transforms=False)
	test = ImgMaster(repo_dir='dataTestTmp_optFlow_BW', set_name='train', inner_size=240, subset_pct=100, do_transforms=False)

	train.init_batch_provider()
	val.init_batch_provider()
	test.init_batch_provider()

	print "Constructing network..."
	#Create AlexNet architecture
	model = constuct_network()

	# Optimzer for model
	opt = Adadelta()

	# configure callbacks
	valmetric = TopKMisclassification(k=5)
	callbacks = Callbacks(model, train, eval_set=test, metric=valmetric, **args.callback_args)

	cost = GeneralizedCost(costfunc=CrossEntropyMulti())

	#flag = input("Press Enter if you want to begin training process.")
	print "Training network..."
	model.fit(train, optimizer=opt, num_epochs=args.epochs, cost=cost, callbacks=callbacks)
	mets = model.eval(test, metric=valmetric)

	print 'Validation set metrics:'
	print 'LogLoss: %.2f, Accuracy: %.1f %%0 (Top-1), %.1f %% (Top-5)' % (mets[0], 
																		(1.0-mets[1])*100,
																		(1.0-mets[2])*100)
	return 
Beispiel #13
0
def main():
    # larger batch sizes may not fit on GPU
    parser = NeonArgparser(__doc__, default_overrides={'batch_size': 4})
    parser.add_argument("--bench", action="store_true", help="run benchmark instead of training")
    parser.add_argument("--num_classes", type=int, default=12, help="number of classes in the annotation")
    parser.add_argument("--height", type=int, default=256, help="image height")
    parser.add_argument("--width", type=int, default=512, help="image width")

    args = parser.parse_args(gen_be=False)

    # check that image dimensions are powers of 2
    if((args.height & (args.height - 1)) != 0):
        raise TypeError("Height must be a power of 2.")
    if((args.width & (args.width - 1)) != 0):
        raise TypeError("Width must be a power of 2.")

    (c, h, w) = (args.num_classes, args.height, args.width)

    # need to use the backend with the new upsampling layer implementation
    be = NervanaGPU_Upsample(rng_seed=args.rng_seed,
                             device_id=args.device_id)
    # set batch size
    be.bsz = args.batch_size

    # couple backend to global neon object
    NervanaObject.be = be

    shape = dict(channel_count=3, height=h, width=w, subtract_mean=False)
    train_params = ImageParams(center=True, flip=False,
                               scale_min=min(h, w), scale_max=min(h, w),
                               aspect_ratio=0, **shape)
    test_params = ImageParams(center=True, flip=False,
                              scale_min=min(h, w), scale_max=min(h, w),
                              aspect_ratio=0, **shape)
    common = dict(target_size=h*w, target_conversion='read_contents',
                  onehot=False, target_dtype=np.uint8, nclasses=args.num_classes)

    train_set = PixelWiseImageLoader(set_name='train', repo_dir=args.data_dir,
                                      media_params=train_params,
                                      shuffle=False, subset_percent=100,
                                      index_file=os.path.join(args.data_dir, 'train_images.csv'),
                                      **common)
    val_set = PixelWiseImageLoader(set_name='val', repo_dir=args.data_dir,media_params=test_params, 
                      index_file=os.path.join(args.data_dir, 'val_images.csv'), **common)

    # initialize model object
    layers = gen_model(c, h, w)
    segnet_model = Model(layers=layers)

    # configure callbacks
    callbacks = Callbacks(segnet_model, eval_set=val_set, **args.callback_args)

    opt_gdm = GradientDescentMomentum(1.0e-6, 0.9, wdecay=0.0005, schedule=Schedule())
    opt_biases = GradientDescentMomentum(2.0e-6, 0.9, schedule=Schedule())
    opt_bn = GradientDescentMomentum(1.0e-6, 0.9, schedule=Schedule())
    opt = MultiOptimizer({'default': opt_gdm, 'Bias': opt_biases, 'BatchNorm': opt_bn})

    cost = GeneralizedCost(costfunc=CrossEntropyMulti())

    if args.bench:
        segnet_model.initialize(train_set, cost=cost)
        segnet_model.benchmark(train_set, cost=cost, optimizer=opt)
        sys.exit(0)
    else:
        segnet_model.fit(train_set, optimizer=opt, num_epochs=args.epochs, cost=cost, callbacks=callbacks)

    # get the trained segnet model outputs for valisation set
    outs_val = segnet_model.get_outputs(val_set)

    with open('outputs.pkl', 'w') as fid:
        pickle.dump(outs_val, fid, -1)
Beispiel #14
0
do_plots = True
try:
    import matplotlib.pyplot as plt
    plt.switch_backend('agg')
except ImportError:
    neon_logger.display('matplotlib needs to be installed manually to generate plots needed '
                        'for this example.  Skipping plot generation')
    do_plots = False

# parse the command line arguments
parser = NeonArgparser(__doc__)
parser.add_argument('--img_prefix', type=str,
                    help='prefix for the saved image file names. If None, use '
                         'the model file name')
args = parser.parse_args(gen_be=True)
assert args.model_file is not None, "need a model file to do Fast R-CNN testing"

if args.img_prefix is None:
    args.img_prefix = os.path.splitext(os.path.basename(args.model_file))[0]

output_dir = os.path.join(args.data_dir, 'frcn_output')
if not os.path.isdir(output_dir):
    os.mkdir(output_dir)

# hyperparameters
args.batch_size = 1
n_mb = 40
img_per_batch = args.batch_size
rois_per_img = 5403
try:
    import matplotlib.pyplot as plt
    plt.switch_backend('agg')
except ImportError:
    print(
        'matplotlib needs to be installed manually to generate plots needed '
        'for this example.  Skipping plot generation')
    do_plots = False

# parse the command line arguments
parser = NeonArgparser(__doc__)
parser.add_argument('--img_prefix',
                    type=str,
                    help='prefix for the saved image file names. If None, use '
                    'the model file name')
args = parser.parse_args(gen_be=True)
assert args.model_file is not None, "need a model file to do Fast R-CNN testing"

if args.img_prefix is None:
    args.img_prefix = os.path.splitext(os.path.basename(args.model_file))[0]

output_dir = os.path.join(args.data_dir, 'frcn_output')
if not os.path.isdir(output_dir):
    os.mkdir(output_dir)

# hyperparameters
args.batch_size = 1
n_mb = 40
img_per_batch = args.batch_size
rois_per_img = 5403
Beispiel #16
0
def main():
    # parse the command line arguments
    parser = NeonArgparser(__doc__)
    parser.add_argument('--output_path',
                        required=True,
                        help='Output path used when training model')
    parser.add_argument('--w2v_path',
                        required=False,
                        default=None,
                        help='Path to GoogleNews w2v file for voab expansion.')
    parser.add_argument(
        '--eval_data_path',
        required=False,
        default='./SICK_data',
        help='Path to the SICK dataset for evaluating semantic relateness')
    parser.add_argument(
        '--max_vocab_size',
        required=False,
        default=1000000,
        help='Limit the vocabulary expansion to fit in GPU memory')
    parser.add_argument(
        '--subset_pct',
        required=False,
        default=100,
        help='subset of training dataset to use (use to retreive \
                        preprocessed data from training)')
    args = parser.parse_args(gen_be=True)

    # load vocab file from training
    _, vocab_file = load_data(args.data_dir,
                              output_path=args.output_path,
                              subset_pct=float(args.subset_pct))
    vocab, _, _ = load_obj(vocab_file)

    vocab_size = len(vocab)
    neon_logger.display(
        "\nVocab size from the dataset is: {}".format(vocab_size))

    index_from = 2  # 0: padding 1: oov
    vocab_size_layer = vocab_size + index_from
    max_len = 30

    # load trained model
    model_dict = load_obj(args.model_file)

    # Vocabulary expansion trick needs to pass the correct vocab set to evaluate (for tokenization)
    if args.w2v_path:
        neon_logger.display(
            "Performing Vocabulary Expansion... Loading W2V...")
        w2v_vocab, w2v_vocab_size = get_w2v_vocab(args.w2v_path,
                                                  int(args.max_vocab_size),
                                                  cache=True)

        vocab_size_layer = w2v_vocab_size + index_from
        model = load_sent_encoder(model_dict,
                                  expand_vocab=True,
                                  orig_vocab=vocab,
                                  w2v_vocab=w2v_vocab,
                                  w2v_path=args.w2v_path,
                                  use_recur_last=True)
        vocab = w2v_vocab
    else:
        # otherwise stick with original vocab size used to train the model
        model = load_sent_encoder(model_dict, use_recur_last=True)

    model.initialize(dataset=(max_len, 1))

    evaluate(model,
             vocab=vocab,
             data_path=args.eval_data_path,
             evaltest=True,
             vocab_size_layer=vocab_size_layer)
Beispiel #17
0
def main():
    parser = NeonArgparser(__doc__)
    args = parser.parse_args(gen_be=False)

    #mat_data = sio.loadmat('../data/timeseries/02_timeseries.mat')

    #ts = V1TimeSeries(mat_data['timeseries'], mat_data['stim'], binning=10)

    seq_len = 30
    hidden = 20

    be = gen_backend(**extract_valid_args(args, gen_backend))

    kohn = KohnV1Dataset(path='../tmp/')
    kohn.gen_iterators(seq_len)
    import pdb; pdb.set_trace()
    train_spike_set = V1IteratorSequence(ts.train, seq_len, return_sequences=False)
    valid_spike_set = V1IteratorSequence(ts.test, seq_len, return_sequences=False)

    init = GlorotUniform()

    # dataset = MNIST(path=args.data_dir)
    # (X_train, y_train), (X_test, y_test), nclass = dataset.load_data()
    # train_set = ArrayIterator([X_train, X_train], y_train, nclass=nclass, lshape=(1, 28, 28))
    # valid_set = ArrayIterator([X_test, X_test], y_test, nclass=nclass, lshape=(1, 28, 28))

    # # weight initialization
    # init_norm = Gaussian(loc=0.0, scale=0.01)

    # # initialize model
    # path1 = Sequential(layers=[Affine(nout=100, init=init_norm, activation=Rectlin()),
    #                            Affine(nout=100, init=init_norm, activation=Rectlin())])

    # path2 = Sequential(layers=[Affine(nout=100, init=init_norm, activation=Rectlin()),
    #                            Affine(nout=100, init=init_norm, activation=Rectlin())])

    # layers = [MergeMultistream(layers=[path1, path2], merge="stack"),
    #           Affine(nout=10, init=init_norm, activation=Logistic(shortcut=True))]

    spike_rnn_path = Sequential( layers = [

        LSTM(hidden, init, activation=Logistic(),
            gate_activation=Logistic(), reset_cells=False),

        Dropout(keep=0.5),

         LSTM(hidden, init, activation=Logistic(),
             gate_activation=Logistic(), reset_cells=False),

        #Dropout(keep=0.85),

        RecurrentLast(),

        Affine(train_set.nfeatures, init, bias=init, activation=Identity(), name='spike_in')])

    stim_rnn_path = Sequential( layers = [

        LSTM(hidden, init, activation=Logistic(),
            gate_activation=Logistic(), reset_cells=False),

        Dropout(keep=0.5),

        RecurrentLast(),
        Affine(1, init, bias=init, activation=Identity(), name='stim')])

    layers = [
            MergeMultiStream(
                layers = [
                    spike_rnn_path,
                    stim_rnn_path],
                merge="stack"),

            Affine(train_set.nfeatures, init, bias=init, activation=Identity(), name='spike_out'),

            Round()
            ]

    model = Model(layers=layers)

    sched = ExpSchedule(decay=0.7)

    # cost = GeneralizedCost(SumSquared())
    cost = GeneralizedCost(MeanSquared())

    optimizer_two = RMSProp(stochastic_round=args.rounding)
    optimizer_one = GradientDescentMomentum(learning_rate=0.1, momentum_coef=0.9, schedule=sched)

    opt = MultiOptimizer({'default': optimizer_one,
                          'Bias': optimizer_two,
                          'special_linear': optimizer_two})

    callbacks = Callbacks(model, eval_set=valid_set, **args.callback_args)
    callbacks.add_hist_callback(filter_key = ['W'])
    #callbacks.add_callback(MetricCallback(eval_set=valid_set, metric=FractionExplainedVariance(), epoch_freq=args.eval_freq))
    #callbacks.add_callback(MetricCallback(eval_set=valid_set,metric=Accuracy(),  epoch_freq=args.eval_freq))

    model.fit(train_set,
              optimizer=opt,
              num_epochs=args.epochs,
              cost=cost,
              callbacks=callbacks)

    train_output = model.get_outputs(
    train_set).reshape(-1, train_set.nfeatures)
    valid_output = model.get_outputs(
    valid_set).reshape(-1, valid_set.nfeatures)
    train_target = train_set.y_series
    valid_target = valid_set.y_series

    tfev = fev(train_output, train_target, train_set.mean)
    vfev = fev(valid_output, valid_target, valid_set.mean)

    neon_logger.display('Train FEV: %g, Valid FEV:  %g' % (tfev, vfev))
    # neon_logger.display('Train Mean: %g, Valid Mean:  %g' % (train_set.mean, valid_set.mean))

    plt.figure()
    plt.plot(train_output[:, 0], train_output[
        :, 1], 'bo', label='prediction')
    plt.plot(train_target[:, 0], train_target[:, 1], 'r.', label='target')
    plt.legend()
    plt.title('Neon on training set')
    plt.savefig('neon_series_training_output.png')

    plt.figure()
    plt.plot(valid_output[:, 0], valid_output[
        :, 1], 'bo', label='prediction')
    plt.plot(valid_target[:, 0], valid_target[:, 1], 'r.', label='target')
    plt.legend()
    plt.title('Neon on validation set')
    plt.savefig('neon_series_validation_output.png')
Beispiel #18
0
def train_mlp():
	"""
	Train data and save scaling and network weights and biases to file
	to be used by forward prop phase on test data
	"""
	parser = NeonArgparser(__doc__)
	
	args = parser.parse_args()
	
	logger = logging.getLogger()
	logger.setLevel(args.log_thresh)
	
	# hyperparameters
	num_epochs = args.epochs
	
	#preprocessor
	std_scale = preprocessing.StandardScaler(with_mean=True,with_std=True)
	#std_scale = feature_scaler(type='Standardizer',with_mean=True,with_std=True)
	
	#number of non one-hot encoded features, including ground truth
	num_feat = 4
	
	# load up the mnist data set
	# split into train and tests sets
	#load data from csv-files and rescale
	#training
	traindf = pd.DataFrame.from_csv('data/train.csv')
	ncols = traindf.shape[1]
	
	#tmpmat=std_scale.fit_transform(traindf.as_matrix())
	#print std_scale.scale_
	#print std_scale.mean_
	
	tmpmat = traindf.as_matrix()
	#print tmpmat[:,1:num_feat]
	
	tmpmat[:,:num_feat] = std_scale.fit_transform(tmpmat[:,:num_feat])
	X_train = tmpmat[:,1:]
	y_train = np.reshape(tmpmat[:,0],(tmpmat[:,0].shape[0],1))
	
	#validation
	validdf = pd.DataFrame.from_csv('data/validate.csv')
	ncols = validdf.shape[1]
	tmpmat = validdf.as_matrix()
	tmpmat[:,:num_feat] = std_scale.transform(tmpmat[:,:num_feat])
	X_valid = tmpmat[:,1:]
	y_valid = np.reshape(tmpmat[:,0],(tmpmat[:,0].shape[0],1))
	
	#test
	testdf = pd.DataFrame.from_csv('data/test.csv')
	ncols = testdf.shape[1]
	tmpmat = testdf.as_matrix()
	tmpmat[:,:num_feat] = std_scale.transform(tmpmat[:,:num_feat])
	X_test = tmpmat[:,1:]
	y_test = np.reshape(tmpmat[:,0],(tmpmat[:,0].shape[0],1))
	
	# setup a training set iterator
	train_set = CustomDataIterator(X_train, lshape=(X_train.shape[1]), y_c=y_train)
	# setup a validation data set iterator
	valid_set = CustomDataIterator(X_valid, lshape=(X_valid.shape[1]), y_c=y_valid)
	# setup a validation data set iterator
	test_set = CustomDataIterator(X_test, lshape=(X_test.shape[1]), y_c=y_test)
	
	# setup weight initialization function
	init_norm = Xavier()
	
	# setup model layers
	layers = [Affine(nout=X_train.shape[1], init=init_norm, activation=Rectlin()),
	          Dropout(keep=0.5),
	          Affine(nout=X_train.shape[1]/2, init=init_norm, activation=Rectlin()),
			  Linear(nout=1, init=init_norm)]
	
	# setup cost function as CrossEntropy
	cost = GeneralizedCost(costfunc=SmoothL1Loss())
	
	# setup optimizer
	#schedule
	#schedule = ExpSchedule(decay=0.3)
	#optimizer = GradientDescentMomentum(0.0001, momentum_coef=0.9, stochastic_round=args.rounding, schedule=schedule)
	optimizer = Adam(learning_rate=0.0001, beta_1=0.9, beta_2=0.999, epsilon=1.e-8)
	
	# initialize model object
	mlp = Model(layers=layers)
	
	# configure callbacks
	if args.callback_args['eval_freq'] is None:
		args.callback_args['eval_freq'] = 1
	
	# configure callbacks
	callbacks = Callbacks(mlp, eval_set=valid_set, **args.callback_args)
	
	callbacks.add_early_stop_callback(stop_func)
	callbacks.add_save_best_state_callback(os.path.join(args.data_dir, "early_stop-best_state.pkl"))
	
	# run fit
	mlp.fit(train_set, optimizer=optimizer, num_epochs=args.epochs, cost=cost, callbacks=callbacks)
	
	#evaluate model
	print('Evaluation Error = %.4f'%(mlp.eval(valid_set, metric=SmoothL1Metric())))
	print('Test set error = %.4f'%(mlp.eval(test_set, metric=SmoothL1Metric())))
	
	# Saving the model
	print 'Saving model parameters!'
	mlp.save_params("model/homeapp_model.prm")
	
	# Reloading saved model
	# This should go in run.py
	mlp=Model("model/homeapp_model.prm")
	print('Test set error = %.4f'%(mlp.eval(test_set, metric=SmoothL1Metric())))
	
	# save the preprocessor vectors:
	np.savez("model/homeapp_preproc", mean=std_scale.mean_, std=std_scale.scale_)

	return 1 
Beispiel #19
0
        if 'states' in ps:
            layer.set_states(ps)
        if i == 10:
            print 'Only load the pre-trained weights up to conv5 layer of Alexnet'
            break


# main script

# parse the command line arguments
parser = NeonArgparser(__doc__)
parser.add_argument(
    '--test_only',
    action='store_true',
    help='skip fitting - evaluate metrics on trained model weights')
args = parser.parse_args(gen_be=False)

# Override save path if None
if args.save_path is None:
    args.save_path = 'frcn_alexnet.pickle'

if args.callback_args['save_path'] is None:
    args.callback_args['save_path'] = args.save_path

if args.callback_args['serialize'] is None:
    args.callback_args['serialize'] = min(args.epochs, 10)

num_epochs = args.epochs

# hyperparameters
args.batch_size = 32
Beispiel #20
0
from neon.backends import gen_backend
from neon.data import Text, load_text
from neon.initializers import Uniform
from neon.layers import GeneralizedCost, LSTM, Affine, GRU, LookupTable
from neon.models import Model
from neon.optimizers import GradientDescentMomentum, Schedule
from neon.transforms import Logistic, Tanh, Softmax, CrossEntropyMulti
from neon.callbacks.callbacks import Callbacks
from neon.util.argparser import NeonArgparser, extract_valid_args

# parse the command line arguments
parser = NeonArgparser(__doc__)
parser.add_argument('--rlayer_type', default='lstm', choices=['gru', 'lstm'],
                    help='type of recurrent layer to use (gru or lstm)')
args = parser.parse_args(gen_be=False)

# hyperparameters from the reference
args.batch_size = 20
time_steps = 20
hidden_size = 200
gradient_clip_norm = 5

# setup backend
be = gen_backend(**extract_valid_args(args, gen_backend))

# download penn treebank
train_path = load_text('ptb-train', path=args.data_dir)
valid_path = load_text('ptb-valid', path=args.data_dir)

Beispiel #21
0
and no partial minibatches, dropout is turned off for reproducibility on gpu
and the learning rate is scaled to handle the reduced dropout percentage.

"""
from neon.util.argparser import NeonArgparser
from neon.initializers import Constant, Gaussian
from neon.layers import Conv, Dropout, Pooling, GeneralizedCost, Affine
from neon.optimizers import GradientDescentMomentum, MultiOptimizer, Schedule
from neon.transforms import Rectlin, Softmax, CrossEntropyMulti, TopKMisclassification
from neon.models import Model
from neon.data import ImageLoader
from neon.callbacks.callbacks import Callbacks

# parse the command line arguments (generates the backend)
parser = NeonArgparser(__doc__)
args = parser.parse_args()

# setup data provider
img_set_options = dict(repo_dir=args.data_dir,
                       inner_size=224,
                       subset_pct=0.09990891117239205)
train = ImageLoader(set_name='train', scale_range=(256, 256), shuffle=False,
                    do_transforms=False, **img_set_options)
test = ImageLoader(set_name='validation', scale_range=(256, 384), shuffle=False,
                   do_transforms=False, **img_set_options)

layers = [Conv((11, 11, 64), init=Gaussian(scale=0.01), bias=Constant(0),
               activation=Rectlin(), padding=3, strides=4),
          Pooling(3, strides=2),
          Conv((5, 5, 192), init=Gaussian(scale=0.01), bias=Constant(1),
               activation=Rectlin(), padding=2),
Beispiel #22
0
from neon.backends import gen_backend
from neon.initializers import GlorotUniform
from neon.optimizers import GradientDescentMomentum, Schedule
from neon.layers import Conv, Dropout, Activation, Pooling, GeneralizedCost, DataTransform
from neon.transforms import Rectlin, Softmax, CrossEntropyMulti, Normalizer
from neon.models import Model
from neon.callbacks.callbacks import Callbacks
from neon.data import ImgMaster, ImageLoader

# parse the command line arguments
parser = NeonArgparser(__doc__)
parser.add_argument('--deconv', action='store_true',
                    help='save visualization data from deconvolution')
parser.add_argument('--loader_version', default='old', choices=['old', 'new'],
                    help='whether to use old dataloader (ImgMaster) or new (ImageLoader)')
args = parser.parse_args()


# hyperparameters
batch_size = 64

# setup backend
be = gen_backend(backend=args.backend,
                 batch_size=batch_size,
                 rng_seed=args.rng_seed,
                 device_id=args.device_id,
                 datatype=args.datatype)

# setup data provider
img_provider = ImgMaster if args.loader_version == 'old' else ImageLoader
img_set_options = dict(repo_dir=args.data_dir,
Beispiel #23
0
def main():
    # parse the command line arguments
    parser = NeonArgparser(__doc__)

    args = parser.parse_args()

    logger = logging.getLogger()
    logger.setLevel(args.log_thresh)

    #Set up batch iterator for training images
    train = ImgMaster(repo_dir='spectroDataTmp',
                      set_name='train',
                      inner_size=400,
                      subset_pct=100)
    val = ImgMaster(repo_dir='spectroDataTmp',
                    set_name='validation',
                    inner_size=400,
                    subset_pct=100,
                    do_transforms=False)
    test = ImgMaster(repo_dir='spectroTestDataTmp',
                     set_name='validation',
                     inner_size=400,
                     subset_pct=100,
                     do_transforms=False)

    train.init_batch_provider()
    test.init_batch_provider()

    print "Constructing network..."
    model = constuct_network()

    model.load_weights(args.model_file)

    #Optimizer
    opt = Adadelta()

    # configure callbacks
    valmetric = TopKMisclassification(k=5)
    callbacks = Callbacks(model,
                          train,
                          eval_set=val,
                          metric=valmetric,
                          **args.callback_args)

    cost = GeneralizedCost(costfunc=CrossEntropyMulti())

    #flag = input("Press Enter if you want to begin training process.")
    print "Training network..."
    print args.epochs
    model.fit(train,
              optimizer=opt,
              num_epochs=args.epochs,
              cost=cost,
              callbacks=callbacks)
    mets = model.eval(test, metric=valmetric)

    print 'Validation set metrics:'
    print 'LogLoss: %.2f, Accuracy: %.1f %%0 (Top-1), %.1f %% (Top-5)' % (
        mets[0], (1.0 - mets[1]) * 100, (1.0 - mets[2]) * 100)
    test.exit_batch_provider()
    train.exit_batch_provider()