Beispiel #1
0
    'max_depth': 5,
    'eta': 0.5,
    'gamma': 0.1,
    'subsample': 1,
    'lambda': 1,
    'alpha': 0.35,
    'objective': 'reg:squarederror',
    'eval_metric': ['mae', 'rmse']
}
watchlist = [(dtest, 'eval'), (dtrain, 'train')]
num_round = 20

# Train model using `xgb.train()`

neptune.create_experiment(name='xgb', tags=['train'], params=params)
xgb.train(params, dtrain, num_round, watchlist, callbacks=[neptune_callback()])

neptune.stop()

# Train model using `xgb.cv()`

neptune.create_experiment(name='xgb', tags=['cv'], params=params)
xgb.cv(params,
       dtrain,
       num_boost_round=num_round,
       nfold=7,
       callbacks=[neptune_callback()])

neptune.stop()

# Train model using `sklearn` API
Beispiel #2
0
params = {'max_depth': 5,
          'eta': 0.5,
          'gamma': 0.1,
          'subsample': 1,
          'lambda': 1,
          'alpha': 0.35,
          'objective': 'reg:squarederror',
          'eval_metric': ['mae', 'rmse']}
watchlist = [(dtest, 'eval'), (dtrain, 'train')]
num_round = 20

# Train model using `xgb.train()`

neptune.create_experiment(name='xgb', tags=['train'], params=params)
xgb.train(params, dtrain, num_round, watchlist,
          callbacks=[neptune_callback()])

neptune.stop()

# Train model using `xgb.cv()`

neptune.create_experiment(name='xgb', tags=['cv'], params=params)
xgb.cv(params, dtrain, num_boost_round=num_round, nfold=7,
       callbacks=[neptune_callback()])

neptune.stop()

# Train model using `sklearn` API

neptune.create_experiment(name='xgb', tags=['sklearn'], params=params)
reg = xgb.XGBRegressor(**params)