Beispiel #1
0
    def _find_nof_links(self):
        min_links = 100000000
        max_links = -100000000
        min_nodes = 100000000
        max_nodes = -100000000
        for elem in self.data:
            if "topology" in elem:
                n_links = elem["topology"]["nof_links"]
                n_nodes = elem["topology"]["nof_nodes"]
                self.nof_links_for_topology[elem["topology"]["name"]] = n_links
                self.nof_nodes_for_topology[elem["topology"]["name"]] = n_nodes
                if elem["topology"]["name"] in ["isp"]:
                    break
                if n_links < min_links:
                    min_links = n_links
                if n_links > max_links:
                    max_links = n_links
                if n_nodes < min_nodes:
                    min_nodes = n_nodes
                if n_nodes > max_nodes:
                    max_nodes = n_nodes
        log.info("Links: MIN {}  MAX {}".format(min_links, max_links))
        log.info("Nodes: MIN {}  MAX {}".format(min_nodes, max_nodes))

        self._print_links_nodes("Colt")
        self._print_links_nodes("Uninett2010")
        self._print_links_nodes("Kdl")
        self._print_links_nodes("AS-3549")
Beispiel #2
0
 def _run_scenarios(scenarios: list, data_file: str, log_file: str):
     """
     :param scenarios: list[BasicScenario]
     """
     log.initialize('ERROR', data_log_file=data_file, log_file=log_file, file_level='INFO')
     np.random.seed()
     for s in scenarios:
         with log_context(str(s)):
             try:
                 s.run()
             except Exception:
                 log.error("Exception while running scenario %s", str(s), exc_info=True)
     log.info("finished running scenarios")
Beispiel #3
0
    def _plot_1bc(self):
        data_list = []
        nof_states = {}
        for elem in self.data:
            if "precision" in elem and elem["ctx"][0] == "Colt-trace":
                data_list.append((elem["ctx"][1], elem["precision"]))
            elif "finished" in elem and elem["ctx"][0] == "Colt-trace":
                nof_states[elem["ctx"][1]] = elem["finished"]["num_explored"]
        df = pd.DataFrame(data_list, columns=["rep", "precision"])

        sph.new_figure(9, 6)
        self._multi_trace_plot(df, nof_states)
        sph.savefig(os.path.join(self.output_dir, "plot_1bi.pdf"))

        time_data_list = []
        for elem in self.data:
            if "time-explore" in elem and elem["ctx"][0] == "isp-trace":
                time_data_list.append(("ISP", elem["time-explore"]))

        if len(time_data_list) == 0:
            log.warning("skipping plot_1cii as ISP data is missing")
            return

        df = pd.DataFrame(time_data_list, columns=["net", "time"])

        max_y = 120
        log.info("Outliers:\n%s", str(df[df.time > max_y]))
        nof_greater_max_y = df[df.time > max_y].count()["net"]

        fig, ax = sph.new_figure(2, 6)
        df.boxplot(column="time",
                   by="net",
                   ax=ax,
                   grid=False,
                   flierprops=self.flierprops)
        ax.grid(b=True, which='major', axis='y', color='w')
        ax.set_axisbelow(True)
        plt.ylim([0, max_y])
        plt.xlabel("")
        plt.ylabel("time [s]")
        plt.title("")
        fig.suptitle("")
        plt.gcf().text(0.4,
                       0.93,
                       "+ {}".format(nof_greater_max_y),
                       fontsize=12)
        sph.savefig(os.path.join(self.output_dir, "plot_1cii.pdf"))
Beispiel #4
0
    args = parser.parse_args()

    if args.debug:
        log.initialize('DEBUG')
    elif args.quiet:
        log.initialize('WARNING')
    else:
        log.initialize('INFO')

    input_file = get_relative_to_working_directory(args.input_file)
    query_file = None
    if args.query:
        query_file = get_relative_to_working_directory(args.query)

    parser = InputParser(input_file, query_file)
    problems = parser.get_problems()
    for problem in problems:
        problem.target_precision = args.precision
        explorer = Explorer(problem)
        sol = explorer.explore_all()

        log.info("explored states: {}".format(sol.num_explored))
        log.info("precision: {}".format(sol.p_explored.invert().val()))

        p_low = sol.p_property.val()
        p_up = sol.p_property.val() + sol.p_explored.invert().val()

        print("P({}) ∈ [{:8.8f}, {:8.8f}]".format(
            problem.property.get_human_readable(parser.name_resolver), p_low,
            p_up))
Beispiel #5
0
                                "Xcongest-{}".format(n_flows),
                                as_3549_file,
                                1.0E-4,
                                10,
                                n_flows,
                                timeout_h=2.0))
        """
        # real ISP configuration (for plot_1cii, under NDA)
        isp_file = os.path.join(input_dir, "private", "isp.json")
        runner.scenarios.append(RealScenario("isp", "trace", isp_file, 1.0E-4, 10, collect_precision=True))
        """

        runner.run_all(args.processes)

    if args.analyze:
        log.initialize('INFO')
        log.info("Generating plots for data directory '%s'", input_dir)

        # collect experiment data
        log.info("Collecting data...")
        data = []
        for fname in os.listdir(input_dir):
            if fname.startswith("experiment_data") and fname.endswith(".log"):
                fpath = os.path.join(input_dir, fname)
                with open(fpath, 'r') as f:
                    for line in f:
                        data.append(json.loads(line))

        # analyze data, create plots
        Analyzer(data, output_dir).analyze()
Beispiel #6
0
    def _plot_1a(self):
        data_list = []
        prec_list = []
        is_timeout = set()
        max_time_explore = {}
        for elem in self.data:
            if "timeout_after_seconds" in elem and elem["ctx"][0].endswith(
                    "-default"):
                is_timeout.add((self._get_topo_name(elem), elem["ctx"][1]))
            elif "time-explore" in elem and elem["ctx"][0].endswith(
                    "-default"):
                nof_links = self.nof_links_for_topology[self._get_topo_name(
                    elem)]

                if self._get_topo_name(
                        elem) not in max_time_explore or max_time_explore[
                            self._get_topo_name(elem)] < elem["time-explore"]:
                    max_time_explore[self._get_topo_name(
                        elem)] = elem["time-explore"]

                if nof_links <= 75:
                    range = "50--75"
                elif nof_links <= 100:
                    range = "76--100"
                elif nof_links <= 200:
                    range = "101--200"
                else:
                    range = "$>$ 200"

                timeout = (self._get_topo_name(elem),
                           elem["ctx"][1]) in is_timeout

                data_list.append(
                    (elem["ctx"][0], nof_links, range, elem["ctx"][1],
                     elem["time-explore"], timeout))
            elif "finished" in elem and elem["ctx"][0].endswith("-default"):
                prec_list.append(
                    (elem["ctx"][0], elem["finished"]["precision"]))
        df = pd.DataFrame(data_list,
                          columns=[
                              "experiment", "links", "range", "rep", "time",
                              "is_timeout"
                          ])
        df_prec = pd.DataFrame(prec_list, columns=["experiment", "precision"])

        # count number of timeouts per topology
        df_to = df[["experiment", "is_timeout"]].groupby("experiment").sum()
        log.info("Number of timeouts:\n%s", str(df_to[df_to.is_timeout > 0]))

        # compute the worst-case imprecision
        log.info(
            "Worst imprecision:\n%s",
            str(df_prec[df_prec.precision > 1E-4].groupby("experiment").max()))

        sph.new_figure(11, 5.5)

        plt.axhline(60 * 60, c="gray", lw=1, label="1 h (timeout)")
        df_max = df[["experiment", "time",
                     "links"]].groupby("experiment").max()
        plt.plot("links",
                 "time",
                 "x",
                 data=df_max,
                 markersize=4,
                 mew=0.6,
                 label="maximum")
        df_med = df[["experiment", "time",
                     "links"]].groupby("experiment").median()
        plt.plot("links",
                 "time",
                 "+",
                 data=df_med,
                 markersize=4,
                 mew=0.6,
                 label="median")

        plt.xlabel("links")
        plt.ylabel("time [s]")
        plt.legend(handletextpad=0.3)
        plt.loglog()

        sph.savefig(os.path.join(self.output_dir, "plot_1a.pdf"))
Beispiel #7
0
 def _print_links_nodes(self, topo_name):
     log.info("Topology {}: {} nodes, {} links".format(
         topo_name, self.nof_nodes_for_topology[topo_name],
         self.nof_links_for_topology[topo_name]))
Beispiel #8
0
    def analyze(self):
        if not os.path.exists(self.output_dir):
            os.makedirs(self.output_dir)

        log.info("Collecting topology statistics...")
        self._find_nof_links()
        log.info("Generating plot 1a...")
        self._plot_1a()
        log.info("Generating plot 1bc...")
        self._plot_1bc()
        log.info("Generating plot intro...")
        self._plot_intro()
        log.info("Generating plot 2...")
        self._plot_2()
        log.info("Generating plot 3...")
        self._plot_3()
        log.info("Generating plot 5...")
        self._plot_5()