def testBuildClassificationNetwork(self):
        batch_size = 5
        num_frames = 64
        height, width = 224, 224
        num_classes = 1000

        inputs = tf.random_uniform((batch_size, num_frames, height, width, 3))
        logits, end_points = i3d.i3d(inputs, num_classes)
        self.assertTrue(logits.op.name.startswith('InceptionV1/Logits'))
        self.assertListEqual(logits.get_shape().as_list(),
                             [batch_size, num_classes])
        self.assertTrue('Predictions' in end_points)
        self.assertListEqual(end_points['Predictions'].get_shape().as_list(),
                             [batch_size, num_classes])
Beispiel #2
0
  def testBuildClassificationNetwork(self):
    batch_size = 5
    num_frames = 64
    height, width = 224, 224
    num_classes = 1000

    inputs = tf.random_uniform((batch_size, num_frames, height, width, 3))
    logits, end_points = i3d.i3d(inputs, num_classes)
    self.assertTrue(logits.op.name.startswith('InceptionV1/Logits'))
    self.assertListEqual(logits.get_shape().as_list(),
                         [batch_size, num_classes])
    self.assertTrue('Predictions' in end_points)
    self.assertListEqual(end_points['Predictions'].get_shape().as_list(),
                         [batch_size, num_classes])
    def testEvaluation(self):
        batch_size = 2
        num_frames = 64
        height, width = 224, 224
        num_classes = 1000

        eval_inputs = tf.random_uniform(
            (batch_size, num_frames, height, width, 3))
        logits, _ = i3d.i3d(eval_inputs, num_classes, is_training=False)
        predictions = tf.argmax(logits, 1)

        with self.test_session() as sess:
            sess.run(tf.global_variables_initializer())
            output = sess.run(predictions)
            self.assertEquals(output.shape, (batch_size, ))
Beispiel #4
0
  def testEvaluation(self):
    batch_size = 2
    num_frames = 64
    height, width = 224, 224
    num_classes = 1000

    eval_inputs = tf.random_uniform((batch_size, num_frames, height, width, 3))
    logits, _ = i3d.i3d(eval_inputs, num_classes,
                        is_training=False)
    predictions = tf.argmax(logits, 1)

    with self.test_session() as sess:
      sess.run(tf.global_variables_initializer())
      output = sess.run(predictions)
      self.assertEquals(output.shape, (batch_size,))
    # tensorboard directory where the summaries are saved during training
    tb_dir = get_output_tb_dir(imdb, args.tag)
    print('TensorFlow summaries will be saved to `{:s}`'.format(tb_dir))

    # also add the validation set, but with no flipping images
    orgflip = cfg.TRAIN.USE_FLIPPED
    cfg.TRAIN.USE_FLIPPED = False
    _, valroidb = combined_roidb(args.imdbval_name)
    print('{:d} validation roidb entries'.format(len(valroidb)))
    cfg.TRAIN.USE_FLIPPED = orgflip

    # load network
    if args.net == 'vgg16':
        # net = vgg16()
        net = i3d()
    elif args.net == 'res50':
        net = resnetv1(num_layers=50)
    elif args.net == 'res101':
        net = resnetv1(num_layers=101)
    elif args.net == 'res152':
        net = resnetv1(num_layers=152)
    elif args.net == 'mobile':
        net = mobilenetv1()
    else:
        raise NotImplementedError
    print(output_dir)
    train_net(net,
              imdb,
              roidb,
              valroidb,