def testModelHasExpectedNumberOfParameters(self):
   batch_size = 5
   height, width = 299, 299
   inputs = tf.random_uniform((batch_size, height, width, 3))
   with slim.arg_scope(inception.inception_v3_arg_scope()):
     inception.inception_v3_base(inputs)
   total_params, _ = slim.model_analyzer.analyze_vars(
       slim.get_model_variables())
   self.assertAlmostEqual(21802784, total_params)
 def testModelHasExpectedNumberOfParameters(self):
   batch_size = 5
   height, width = 299, 299
   inputs = tf.random.uniform((batch_size, height, width, 3))
   with slim.arg_scope(inception.inception_v3_arg_scope()):
     inception.inception_v3_base(inputs)
   total_params, _ = slim.model_analyzer.analyze_vars(
       slim.get_model_variables())
   self.assertAlmostEqual(21802784, total_params)
  def testBuildAndCheckAllEndPointsUptoMixed7c(self):
    batch_size = 5
    height, width = 299, 299

    inputs = tf.random.uniform((batch_size, height, width, 3))
    _, end_points = inception.inception_v3_base(
        inputs, final_endpoint='Mixed_7c')
    endpoints_shapes = {'Conv2d_1a_3x3': [batch_size, 149, 149, 32],
                        'Conv2d_2a_3x3': [batch_size, 147, 147, 32],
                        'Conv2d_2b_3x3': [batch_size, 147, 147, 64],
                        'MaxPool_3a_3x3': [batch_size, 73, 73, 64],
                        'Conv2d_3b_1x1': [batch_size, 73, 73, 80],
                        'Conv2d_4a_3x3': [batch_size, 71, 71, 192],
                        'MaxPool_5a_3x3': [batch_size, 35, 35, 192],
                        'Mixed_5b': [batch_size, 35, 35, 256],
                        'Mixed_5c': [batch_size, 35, 35, 288],
                        'Mixed_5d': [batch_size, 35, 35, 288],
                        'Mixed_6a': [batch_size, 17, 17, 768],
                        'Mixed_6b': [batch_size, 17, 17, 768],
                        'Mixed_6c': [batch_size, 17, 17, 768],
                        'Mixed_6d': [batch_size, 17, 17, 768],
                        'Mixed_6e': [batch_size, 17, 17, 768],
                        'Mixed_7a': [batch_size, 8, 8, 1280],
                        'Mixed_7b': [batch_size, 8, 8, 2048],
                        'Mixed_7c': [batch_size, 8, 8, 2048]}
    self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys())
    for endpoint_name in endpoints_shapes:
      expected_shape = endpoints_shapes[endpoint_name]
      self.assertTrue(endpoint_name in end_points)
      self.assertListEqual(end_points[endpoint_name].get_shape().as_list(),
                           expected_shape)
  def testBuildAndCheckAllEndPointsUptoMixed7c(self):
    batch_size = 5
    height, width = 299, 299

    inputs = tf.random_uniform((batch_size, height, width, 3))
    _, end_points = inception.inception_v3_base(
        inputs, final_endpoint='Mixed_7c')
    endpoints_shapes = {'Conv2d_1a_3x3': [batch_size, 149, 149, 32],
                        'Conv2d_2a_3x3': [batch_size, 147, 147, 32],
                        'Conv2d_2b_3x3': [batch_size, 147, 147, 64],
                        'MaxPool_3a_3x3': [batch_size, 73, 73, 64],
                        'Conv2d_3b_1x1': [batch_size, 73, 73, 80],
                        'Conv2d_4a_3x3': [batch_size, 71, 71, 192],
                        'MaxPool_5a_3x3': [batch_size, 35, 35, 192],
                        'Mixed_5b': [batch_size, 35, 35, 256],
                        'Mixed_5c': [batch_size, 35, 35, 288],
                        'Mixed_5d': [batch_size, 35, 35, 288],
                        'Mixed_6a': [batch_size, 17, 17, 768],
                        'Mixed_6b': [batch_size, 17, 17, 768],
                        'Mixed_6c': [batch_size, 17, 17, 768],
                        'Mixed_6d': [batch_size, 17, 17, 768],
                        'Mixed_6e': [batch_size, 17, 17, 768],
                        'Mixed_7a': [batch_size, 8, 8, 1280],
                        'Mixed_7b': [batch_size, 8, 8, 2048],
                        'Mixed_7c': [batch_size, 8, 8, 2048]}
    self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys())
    for endpoint_name in endpoints_shapes:
      expected_shape = endpoints_shapes[endpoint_name]
      self.assertTrue(endpoint_name in end_points)
      self.assertListEqual(end_points[endpoint_name].get_shape().as_list(),
                           expected_shape)
Beispiel #5
0
    def init_cnn_graph(self, checkpoints_path):
        with self.graph.as_default():
            tf_global_step = tf.train.get_or_create_global_step()
            self.image_input = tf.placeholder(tf.float32,
                                              shape=(None, None, 3))
            image = inception_preprocessing.preprocess_image(
                self.image_input,
                self.inception_dim,
                self.inception_dim,
                is_training=False,
                center_crop=self.center_crop,
            )
            images = tf.expand_dims(image, 0)

            with slim.arg_scope(self.arg_scope):
                slim_args = [slim.batch_norm, slim.dropout]
                with slim.arg_scope(slim_args, is_training=False):
                    with tf.variable_scope('InceptionV3', reuse=None) as scope:
                        net, _ = inception.inception_v3_base(
                            images, final_endpoint=self.endpoint, scope=scope)
            self.net = tf.reduce_mean(net, [0, 1, 2])

            variable_averages = tf.train.ExponentialMovingAverage(
                self.moving_average_decay, tf_global_step)
            variables_to_restore = variable_averages.variables_to_restore()
            self.init_fn = slim.assign_from_checkpoint_fn(
                checkpoints_path, variables_to_restore)
  def testBuildBaseNetwork(self):
    batch_size = 5
    height, width = 299, 299

    inputs = tf.random.uniform((batch_size, height, width, 3))
    final_endpoint, end_points = inception.inception_v3_base(inputs)
    self.assertTrue(final_endpoint.op.name.startswith(
        'InceptionV3/Mixed_7c'))
    self.assertListEqual(final_endpoint.get_shape().as_list(),
                         [batch_size, 8, 8, 2048])
    expected_endpoints = ['Conv2d_1a_3x3', 'Conv2d_2a_3x3', 'Conv2d_2b_3x3',
                          'MaxPool_3a_3x3', 'Conv2d_3b_1x1', 'Conv2d_4a_3x3',
                          'MaxPool_5a_3x3', 'Mixed_5b', 'Mixed_5c', 'Mixed_5d',
                          'Mixed_6a', 'Mixed_6b', 'Mixed_6c', 'Mixed_6d',
                          'Mixed_6e', 'Mixed_7a', 'Mixed_7b', 'Mixed_7c']
    self.assertItemsEqual(end_points.keys(), expected_endpoints)
  def testBuildBaseNetwork(self):
    batch_size = 5
    height, width = 299, 299

    inputs = tf.random_uniform((batch_size, height, width, 3))
    final_endpoint, end_points = inception.inception_v3_base(inputs)
    self.assertTrue(final_endpoint.op.name.startswith(
        'InceptionV3/Mixed_7c'))
    self.assertListEqual(final_endpoint.get_shape().as_list(),
                         [batch_size, 8, 8, 2048])
    expected_endpoints = ['Conv2d_1a_3x3', 'Conv2d_2a_3x3', 'Conv2d_2b_3x3',
                          'MaxPool_3a_3x3', 'Conv2d_3b_1x1', 'Conv2d_4a_3x3',
                          'MaxPool_5a_3x3', 'Mixed_5b', 'Mixed_5c', 'Mixed_5d',
                          'Mixed_6a', 'Mixed_6b', 'Mixed_6c', 'Mixed_6d',
                          'Mixed_6e', 'Mixed_7a', 'Mixed_7b', 'Mixed_7c']
    self.assertItemsEqual(end_points.keys(), expected_endpoints)
  def testBuildOnlyUptoFinalEndpoint(self):
    batch_size = 5
    height, width = 299, 299
    endpoints = ['Conv2d_1a_3x3', 'Conv2d_2a_3x3', 'Conv2d_2b_3x3',
                 'MaxPool_3a_3x3', 'Conv2d_3b_1x1', 'Conv2d_4a_3x3',
                 'MaxPool_5a_3x3', 'Mixed_5b', 'Mixed_5c', 'Mixed_5d',
                 'Mixed_6a', 'Mixed_6b', 'Mixed_6c', 'Mixed_6d',
                 'Mixed_6e', 'Mixed_7a', 'Mixed_7b', 'Mixed_7c']

    for index, endpoint in enumerate(endpoints):
      with tf.Graph().as_default():
        inputs = tf.random.uniform((batch_size, height, width, 3))
        out_tensor, end_points = inception.inception_v3_base(
            inputs, final_endpoint=endpoint)
        self.assertTrue(out_tensor.op.name.startswith(
            'InceptionV3/' + endpoint))
        self.assertItemsEqual(endpoints[:index+1], end_points)
  def testBuildOnlyUptoFinalEndpoint(self):
    batch_size = 5
    height, width = 299, 299
    endpoints = ['Conv2d_1a_3x3', 'Conv2d_2a_3x3', 'Conv2d_2b_3x3',
                 'MaxPool_3a_3x3', 'Conv2d_3b_1x1', 'Conv2d_4a_3x3',
                 'MaxPool_5a_3x3', 'Mixed_5b', 'Mixed_5c', 'Mixed_5d',
                 'Mixed_6a', 'Mixed_6b', 'Mixed_6c', 'Mixed_6d',
                 'Mixed_6e', 'Mixed_7a', 'Mixed_7b', 'Mixed_7c']

    for index, endpoint in enumerate(endpoints):
      with tf.Graph().as_default():
        inputs = tf.random_uniform((batch_size, height, width, 3))
        out_tensor, end_points = inception.inception_v3_base(
            inputs, final_endpoint=endpoint)
        self.assertTrue(out_tensor.op.name.startswith(
            'InceptionV3/' + endpoint))
        self.assertItemsEqual(endpoints[:index+1], end_points)
Beispiel #10
0
    def __call__(self,
                 image_input,
                 training=False,
                 keep_prob=1.0,
                 endpoint_name='Mixed_6e'):
        weight_decay = FLAGS.weight_decay
        activation_fn = tf.nn.relu

        end_points = {}
        with slim.arg_scope(
                inception.inception_v3_arg_scope(
                    weight_decay=FLAGS.weight_decay)):
            with tf.variable_scope("", reuse=self.reuse):
                with tf.variable_scope(None, 'InceptionV3',
                                       [image_input]) as scope:
                    with slim.arg_scope([slim.batch_norm, slim.dropout],
                                        is_training=training):
                        net, end_points = inception.inception_v3_base(
                            image_input, scope=scope)
                        feature_map = end_points[endpoint_name]
                        self.reuse = True

        return feature_map
Beispiel #11
0
def _construct_model(model_type='resnet_v1_50'):
  """Constructs model for the desired type of CNN.

  Args:
    model_type: Type of model to be used.

  Returns:
    end_points: A dictionary from components of the network to the corresponding
      activations.

  Raises:
    ValueError: If the model_type is not supported.
  """
  # Placeholder input.
  images = array_ops.placeholder(
      dtypes.float32, shape=(1, None, None, 3), name=_INPUT_NODE)

  # Construct model.
  if model_type == 'inception_resnet_v2':
    _, end_points = inception.inception_resnet_v2_base(images)
  elif model_type == 'inception_resnet_v2-same':
    _, end_points = inception.inception_resnet_v2_base(
        images, align_feature_maps=True)
  elif model_type == 'inception_v2':
    _, end_points = inception.inception_v2_base(images)
  elif model_type == 'inception_v2-no-separable-conv':
    _, end_points = inception.inception_v2_base(
        images, use_separable_conv=False)
  elif model_type == 'inception_v3':
    _, end_points = inception.inception_v3_base(images)
  elif model_type == 'inception_v4':
    _, end_points = inception.inception_v4_base(images)
  elif model_type == 'alexnet_v2':
    _, end_points = alexnet.alexnet_v2(images)
  elif model_type == 'vgg_a':
    _, end_points = vgg.vgg_a(images)
  elif model_type == 'vgg_16':
    _, end_points = vgg.vgg_16(images)
  elif model_type == 'mobilenet_v1':
    _, end_points = mobilenet_v1.mobilenet_v1_base(images)
  elif model_type == 'mobilenet_v1_075':
    _, end_points = mobilenet_v1.mobilenet_v1_base(
        images, depth_multiplier=0.75)
  elif model_type == 'resnet_v1_50':
    _, end_points = resnet_v1.resnet_v1_50(
        images, num_classes=None, is_training=False, global_pool=False)
  elif model_type == 'resnet_v1_101':
    _, end_points = resnet_v1.resnet_v1_101(
        images, num_classes=None, is_training=False, global_pool=False)
  elif model_type == 'resnet_v1_152':
    _, end_points = resnet_v1.resnet_v1_152(
        images, num_classes=None, is_training=False, global_pool=False)
  elif model_type == 'resnet_v1_200':
    _, end_points = resnet_v1.resnet_v1_200(
        images, num_classes=None, is_training=False, global_pool=False)
  elif model_type == 'resnet_v2_50':
    _, end_points = resnet_v2.resnet_v2_50(
        images, num_classes=None, is_training=False, global_pool=False)
  elif model_type == 'resnet_v2_101':
    _, end_points = resnet_v2.resnet_v2_101(
        images, num_classes=None, is_training=False, global_pool=False)
  elif model_type == 'resnet_v2_152':
    _, end_points = resnet_v2.resnet_v2_152(
        images, num_classes=None, is_training=False, global_pool=False)
  elif model_type == 'resnet_v2_200':
    _, end_points = resnet_v2.resnet_v2_200(
        images, num_classes=None, is_training=False, global_pool=False)
  else:
    raise ValueError('Unsupported model_type %s.' % model_type)

  return end_points
Beispiel #12
0
def _construct_model(model_type='resnet_v1_50'):
    """Constructs model for the desired type of CNN.

  Args:
    model_type: Type of model to be used.

  Returns:
    end_points: A dictionary from components of the network to the corresponding
      activations.

  Raises:
    ValueError: If the model_type is not supported.
  """
    # Placeholder input.
    images = array_ops.placeholder(dtypes.float32,
                                   shape=(1, None, None, 3),
                                   name=_INPUT_NODE)

    # Construct model.
    if model_type == 'inception_resnet_v2':
        _, end_points = inception.inception_resnet_v2_base(images)
    elif model_type == 'inception_resnet_v2-same':
        _, end_points = inception.inception_resnet_v2_base(
            images, align_feature_maps=True)
    elif model_type == 'inception_v2':
        _, end_points = inception.inception_v2_base(images)
    elif model_type == 'inception_v2-no-separable-conv':
        _, end_points = inception.inception_v2_base(images,
                                                    use_separable_conv=False)
    elif model_type == 'inception_v3':
        _, end_points = inception.inception_v3_base(images)
    elif model_type == 'inception_v4':
        _, end_points = inception.inception_v4_base(images)
    elif model_type == 'alexnet_v2':
        _, end_points = alexnet.alexnet_v2(images)
    elif model_type == 'vgg_a':
        _, end_points = vgg.vgg_a(images)
    elif model_type == 'vgg_16':
        _, end_points = vgg.vgg_16(images)
    elif model_type == 'mobilenet_v1':
        _, end_points = mobilenet_v1.mobilenet_v1_base(images)
    elif model_type == 'mobilenet_v1_075':
        _, end_points = mobilenet_v1.mobilenet_v1_base(images,
                                                       depth_multiplier=0.75)
    elif model_type == 'resnet_v1_50':
        _, end_points = resnet_v1.resnet_v1_50(images,
                                               num_classes=None,
                                               is_training=False,
                                               global_pool=False)
    elif model_type == 'resnet_v1_101':
        _, end_points = resnet_v1.resnet_v1_101(images,
                                                num_classes=None,
                                                is_training=False,
                                                global_pool=False)
    elif model_type == 'resnet_v1_152':
        _, end_points = resnet_v1.resnet_v1_152(images,
                                                num_classes=None,
                                                is_training=False,
                                                global_pool=False)
    elif model_type == 'resnet_v1_200':
        _, end_points = resnet_v1.resnet_v1_200(images,
                                                num_classes=None,
                                                is_training=False,
                                                global_pool=False)
    elif model_type == 'resnet_v2_50':
        _, end_points = resnet_v2.resnet_v2_50(images,
                                               num_classes=None,
                                               is_training=False,
                                               global_pool=False)
    elif model_type == 'resnet_v2_101':
        _, end_points = resnet_v2.resnet_v2_101(images,
                                                num_classes=None,
                                                is_training=False,
                                                global_pool=False)
    elif model_type == 'resnet_v2_152':
        _, end_points = resnet_v2.resnet_v2_152(images,
                                                num_classes=None,
                                                is_training=False,
                                                global_pool=False)
    elif model_type == 'resnet_v2_200':
        _, end_points = resnet_v2.resnet_v2_200(images,
                                                num_classes=None,
                                                is_training=False,
                                                global_pool=False)
    else:
        raise ValueError('Unsupported model_type %s.' % model_type)

    return end_points
    if base_network == 'ResNet':
        with slim.arg_scope(resnet_v2.resnet_arg_scope(use_batch_norm=True)):
            if layers == '50':
                net, _ = resnet_v2.resnet_v2_50(images, is_training=False)
            elif layers == '101':
                net, _ = resnet_v2.resnet_v2_101(images, is_training=False)
            elif layers == '152':
                net, _ = resnet_v2.resnet_v2_152(images, is_training=False)
    else:
        with slim.arg_scope(arg_scope):
            slim_args = [slim.batch_norm, slim.dropout]
            with slim.arg_scope(slim_args, is_training=False):
                with tf.variable_scope(base_network, reuse=None) as scope:
                    if base_network == 'InceptionV3':
                        net, _ = inception.inception_v3_base(
                            images, final_endpoint=endpoint, scope=scope)
                    elif base_network == 'InceptionV3SE':
                        net, _ = inception.inception_v3_se_base(
                            images, final_endpoint=endpoint, scope=scope)
                    elif base_network == 'InceptionV4':
                        net, _ = inception.inception_v4_base(
                            images, final_endpoint=endpoint, scope=scope)
                    elif base_network == 'InceptionResnetV2':
                        net, _ = inception.inception_resnet_v2_base(
                            images, final_endpoint=endpoint, scope=scope)
                    elif base_network == 'InceptionResnetV2SE':
                        net, _ = inception.inception_resnet_v2_se_base(
                            images, final_endpoint=endpoint, scope=scope)
    net = tf.reduce_mean(net, [0,1,2])

    variable_averages = tf.train.ExponentialMovingAverage(