def __init__(self, name, split):
     self.name = name
     self.split = split
     self.path = os.path.join(settings.checkpoints,
                              name + '-split_{}'.format(split))
     self.net = RefineNet(SCSENoPoolResNextBase(se_resnext101_32x4d()),
                          num_features=128,
                          classifier=lambda c: RefineNetUpsampleClassifier(
                              c, scale_factor=2),
                          block=SCSERefineNetBlock)
     self.tta = [
         tta.Pipeline([tta.Pad((13, 14, 13, 14))]),
         tta.Pipeline([tta.Pad((13, 14, 13, 14)),
                       tta.Flip()])
     ]
Beispiel #2
0
 def __init__(self, name, split):
     self.name = name
     self.split = split
     self.path = os.path.join(settings.checkpoints, name + '-split_{}'.format(split))
     self.net = RefineNet(
         NoPoolDPN92Base(dpn92()),
         num_features=128,
         block_multiplier=1,
         num_features_base=[256 + 80, 512 + 192, 1024 + 528, 2048 + 640],
         classifier=lambda c: RefineNetUpsampleClassifier(c, scale_factor=2)
     )
     self.tta = [
         tta.Pipeline([tta.Pad((13, 14, 13, 14))]),
         tta.Pipeline([tta.Pad((13, 14, 13, 14)), tta.Flip()])
     ]
Beispiel #3
0
 def __init__(self, name, split):
     self.name = name
     self.split = split
     self.path = os.path.join(settings.checkpoints,
                              name + '-split_{}'.format(split))
     self.net = HypercolumnCatRefineNet(
         SCSENoPoolResNextBase(se_resnet101()),
         num_features=128,
         classifier=lambda c: RefineNetUpsampleClassifier(640,
                                                          scale_factor=2),
         block=SCSERefineNetBlock)
     self.tta = [
         tta.Pipeline([tta.Resize((128, 128))]),
         tta.Pipeline([tta.Resize((128, 128)),
                       tta.Flip()])
     ]
Beispiel #4
0
    def __init__(self, name, split):
        self.name = name
        self.split = split
        self.path = os.path.join(settings.checkpoints, name + '-split_{}'.format(split))
        self.net = DualHypercolumnCatRefineNet(
            SCSENoPoolResNextBase(se_resnet152()),
            num_features=128,
            classifier=lambda c: RefineNetUpsampleClassifier(2*c, scale_factor=2),
            block=SCSERefineNetBlock
        )
        self.tta = [
            tta.Pipeline([tta.Pad((13, 14, 13, 14))]),
            tta.Pipeline([tta.Pad((13, 14, 13, 14)), tta.Flip()])
        ]

        self.test_predictions = utils.TestPredictions('ensemble-{}'.format(split)).load()
    def __init__(self, name, split):
        self.name = name
        self.split = split
        self.path = os.path.join(settings.checkpoints,
                                 name + '-split_{}'.format(split))
        self.net = RefineNet(NoPoolDPN98Base(dpn98()),
                             num_features=128,
                             block_multiplier=1,
                             num_features_base=[336, 768, 1728, 2688],
                             classifier=lambda c: RefineNetUpsampleClassifier(
                                 c, scale_factor=2))
        self.optimizer = Adam(self.net.parameters(),
                              lr=1e-4,
                              weight_decay=1e-4)
        self.tta = [
            tta.Pipeline([tta.Pad((13, 14, 13, 14))]),
            tta.Pipeline([tta.Pad((13, 14, 13, 14)),
                          tta.Flip()])
        ]

        self.batch_size = 16