Beispiel #1
0
    def generate(self):
        self.net = YoloBody(self.anchors_mask, self.num_classes, self.backbone)
        device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        self.net.load_state_dict(
            torch.load(self.model_path, map_location=device))
        self.net = self.net.eval()
        print('{} model, anchors, and classes loaded.'.format(self.model_path))

        if self.cuda:
            self.net = nn.DataParallel(self.net)
            self.net = self.net.cuda()
Beispiel #2
0
 def generate(self, onnx=False):
     #---------------------------------------------------#
     #   建立yolov3模型,载入yolov3模型的权重
     #---------------------------------------------------#
     self.net    = YoloBody(self.anchors_mask, self.num_classes)
     device      = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
     self.net.load_state_dict(torch.load(self.model_path, map_location=device))
     self.net    = self.net.eval()
     print('{} model, anchors, and classes loaded.'.format(self.model_path))
     if not onnx:
         if self.cuda:
             self.net = nn.DataParallel(self.net)
             self.net = self.net.cuda()
Beispiel #3
0
    #----------------------------------------------------#
    #   获得图片路径和标签
    #----------------------------------------------------#
    train_annotation_path = '2007_train.txt'
    val_annotation_path = '2007_val.txt'

    #----------------------------------------------------#
    #   获取classes和anchor
    #----------------------------------------------------#
    class_names, num_classes = get_classes(classes_path)
    anchors, num_anchors = get_anchors(anchors_path)

    #------------------------------------------------------#
    #   创建yolo模型
    #------------------------------------------------------#
    model = YoloBody(anchors_mask, num_classes)
    weights_init(model)
    if model_path != '':
        #------------------------------------------------------#
        #   权值文件请看README,百度网盘下载
        #------------------------------------------------------#
        print('Load weights {}.'.format(model_path))
        device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        model_dict = model.state_dict()
        pretrained_dict = torch.load(model_path, map_location=device)
        pretrained_dict = {
            k: v
            for k, v in pretrained_dict.items()
            if np.shape(model_dict[k]) == np.shape(v)
        }
        model_dict.update(pretrained_dict)
Beispiel #4
0
    #   train_annotation_path   训练图片路径和标签
    #   val_annotation_path     训练图片路径和标签
    #------------------------------------------------------#
    train_annotation_path   = '2007_train.txt'
    val_annotation_path     = '2007_val.txt'

    #----------------------------------------------------#
    #   获取classes和anchor
    #----------------------------------------------------#
    class_names, num_classes = get_classes(classes_path)
    anchors, num_anchors     = get_anchors(anchors_path)

    #------------------------------------------------------#
    #   创建yolo模型
    #------------------------------------------------------#
    model = YoloBody(anchors_mask, num_classes, backbone = backbone, pretrained = pretrained)
    if not pretrained:
        weights_init(model)
    if model_path != '':
        #------------------------------------------------------#
        #   权值文件请看README,百度网盘下载
        #------------------------------------------------------#
        print('Load weights {}.'.format(model_path))
        device          = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        model_dict      = model.state_dict()
        pretrained_dict = torch.load(model_path, map_location = device)
        pretrained_dict = {k: v for k, v in pretrained_dict.items() if np.shape(model_dict[k]) == np.shape(v)}
        model_dict.update(pretrained_dict)
        model.load_state_dict(model_dict)

    yolo_loss    = YOLOLoss(anchors, num_classes, input_shape, Cuda, anchors_mask, label_smoothing)
Beispiel #5
0
class YOLO(object):
    _defaults = {
        #--------------------------------------------------------------------------#
        #   使用自己训练好的模型进行预测一定要修改model_path和classes_path!
        #   model_path指向logs文件夹下的权值文件,classes_path指向model_data下的txt
        #
        #   训练好后logs文件夹下存在多个权值文件,选择验证集损失较低的即可。
        #   验证集损失较低不代表mAP较高,仅代表该权值在验证集上泛化性能较好。
        #   如果出现shape不匹配,同时要注意训练时的model_path和classes_path参数的修改
        #--------------------------------------------------------------------------#
        "model_path": 'model_data/yolo4_weights.pth',
        "classes_path": 'model_data/coco_classes.txt',
        #---------------------------------------------------------------------#
        #   anchors_path代表先验框对应的txt文件,一般不修改。
        #   anchors_mask用于帮助代码找到对应的先验框,一般不修改。
        #---------------------------------------------------------------------#
        "anchors_path": 'model_data/yolo_anchors.txt',
        "anchors_mask": [[6, 7, 8], [3, 4, 5], [0, 1, 2]],
        #---------------------------------------------------------------------#
        #   输入图片的大小,必须为32的倍数。
        #---------------------------------------------------------------------#
        "input_shape": [416, 416],
        #---------------------------------------------------------------------#
        #   只有得分大于置信度的预测框会被保留下来
        #---------------------------------------------------------------------#
        "confidence": 0.5,
        #---------------------------------------------------------------------#
        #   非极大抑制所用到的nms_iou大小
        #---------------------------------------------------------------------#
        "nms_iou": 0.3,
        #---------------------------------------------------------------------#
        #   该变量用于控制是否使用letterbox_image对输入图像进行不失真的resize,
        #   在多次测试后,发现关闭letterbox_image直接resize的效果更好
        #---------------------------------------------------------------------#
        "letterbox_image": False,
        #-------------------------------#
        #   是否使用Cuda
        #   没有GPU可以设置成False
        #-------------------------------#
        "cuda": True,
    }

    @classmethod
    def get_defaults(cls, n):
        if n in cls._defaults:
            return cls._defaults[n]
        else:
            return "Unrecognized attribute name '" + n + "'"

    #---------------------------------------------------#
    #   初始化YOLO
    #---------------------------------------------------#
    def __init__(self, **kwargs):
        self.__dict__.update(self._defaults)
        for name, value in kwargs.items():
            setattr(self, name, value)

        #---------------------------------------------------#
        #   获得种类和先验框的数量
        #---------------------------------------------------#
        self.class_names, self.num_classes = get_classes(self.classes_path)
        self.anchors, self.num_anchors = get_anchors(self.anchors_path)
        self.bbox_util = DecodeBox(self.anchors, self.num_classes,
                                   (self.input_shape[0], self.input_shape[1]),
                                   self.anchors_mask)

        #---------------------------------------------------#
        #   画框设置不同的颜色
        #---------------------------------------------------#
        hsv_tuples = [(x / self.num_classes, 1., 1.)
                      for x in range(self.num_classes)]
        self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
        self.colors = list(
            map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)),
                self.colors))
        self.generate()

    #---------------------------------------------------#
    #   生成模型
    #---------------------------------------------------#
    def generate(self):
        #---------------------------------------------------#
        #   建立yolo模型,载入yolo模型的权重
        #---------------------------------------------------#
        self.net = YoloBody(self.anchors_mask, self.num_classes)
        device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        self.net.load_state_dict(
            torch.load(self.model_path, map_location=device))
        self.net = self.net.eval()
        print('{} model, anchors, and classes loaded.'.format(self.model_path))

        if self.cuda:
            self.net = nn.DataParallel(self.net)
            self.net = self.net.cuda()

    #---------------------------------------------------#
    #   检测图片
    #---------------------------------------------------#
    def detect_image(self, image):
        #---------------------------------------------------#
        #   计算输入图片的高和宽
        #---------------------------------------------------#
        image_shape = np.array(np.shape(image)[0:2])
        #---------------------------------------------------------#
        #   在这里将图像转换成RGB图像,防止灰度图在预测时报错。
        #   代码仅仅支持RGB图像的预测,所有其它类型的图像都会转化成RGB
        #---------------------------------------------------------#
        image = cvtColor(image)
        #---------------------------------------------------------#
        #   给图像增加灰条,实现不失真的resize
        #   也可以直接resize进行识别
        #---------------------------------------------------------#
        image_data = resize_image(image,
                                  (self.input_shape[1], self.input_shape[0]),
                                  self.letterbox_image)
        #---------------------------------------------------------#
        #   添加上batch_size维度
        #---------------------------------------------------------#
        image_data = np.expand_dims(
            np.transpose(
                preprocess_input(np.array(image_data, dtype='float32')),
                (2, 0, 1)), 0)

        with torch.no_grad():
            images = torch.from_numpy(image_data)
            if self.cuda:
                images = images.cuda()
            #---------------------------------------------------------#
            #   将图像输入网络当中进行预测!
            #---------------------------------------------------------#
            outputs = self.net(images)
            outputs = self.bbox_util.decode_box(outputs)
            #---------------------------------------------------------#
            #   将预测框进行堆叠,然后进行非极大抑制
            #---------------------------------------------------------#
            results = self.bbox_util.non_max_suppression(
                torch.cat(outputs, 1),
                self.num_classes,
                self.input_shape,
                image_shape,
                self.letterbox_image,
                conf_thres=self.confidence,
                nms_thres=self.nms_iou)

            if results[0] is None:
                return image

            top_label = np.array(results[0][:, 6], dtype='int32')
            top_conf = results[0][:, 4] * results[0][:, 5]
            top_boxes = results[0][:, :4]
        #---------------------------------------------------------#
        #   设置字体与边框厚度
        #---------------------------------------------------------#
        font = ImageFont.truetype(font='model_data/simhei.ttf',
                                  size=np.floor(3e-2 * image.size[1] +
                                                0.5).astype('int32'))
        thickness = int(
            max((image.size[0] + image.size[1]) // np.mean(self.input_shape),
                1))

        #---------------------------------------------------------#
        #   图像绘制
        #---------------------------------------------------------#
        for i, c in list(enumerate(top_label)):
            predicted_class = self.class_names[int(c)]
            box = top_boxes[i]
            score = top_conf[i]

            top, left, bottom, right = box

            top = max(0, np.floor(top).astype('int32'))
            left = max(0, np.floor(left).astype('int32'))
            bottom = min(image.size[1], np.floor(bottom).astype('int32'))
            right = min(image.size[0], np.floor(right).astype('int32'))

            label = '{} {:.2f}'.format(predicted_class, score)
            draw = ImageDraw.Draw(image)
            label_size = draw.textsize(label, font)
            label = label.encode('utf-8')
            print(label, top, left, bottom, right)

            if top - label_size[1] >= 0:
                text_origin = np.array([left, top - label_size[1]])
            else:
                text_origin = np.array([left, top + 1])

            for i in range(thickness):
                draw.rectangle([left + i, top + i, right - i, bottom - i],
                               outline=self.colors[c])
            draw.rectangle(
                [tuple(text_origin),
                 tuple(text_origin + label_size)],
                fill=self.colors[c])
            draw.text(text_origin,
                      str(label, 'UTF-8'),
                      fill=(0, 0, 0),
                      font=font)
            del draw

        return image

    def get_FPS(self, image, test_interval):
        image_shape = np.array(np.shape(image)[0:2])
        #---------------------------------------------------------#
        #   在这里将图像转换成RGB图像,防止灰度图在预测时报错。
        #   代码仅仅支持RGB图像的预测,所有其它类型的图像都会转化成RGB
        #---------------------------------------------------------#
        image = cvtColor(image)
        #---------------------------------------------------------#
        #   给图像增加灰条,实现不失真的resize
        #   也可以直接resize进行识别
        #---------------------------------------------------------#
        image_data = resize_image(image,
                                  (self.input_shape[1], self.input_shape[0]),
                                  self.letterbox_image)
        #---------------------------------------------------------#
        #   添加上batch_size维度
        #---------------------------------------------------------#
        image_data = np.expand_dims(
            np.transpose(
                preprocess_input(np.array(image_data, dtype='float32')),
                (2, 0, 1)), 0)

        with torch.no_grad():
            images = torch.from_numpy(image_data)
            if self.cuda:
                images = images.cuda()
            #---------------------------------------------------------#
            #   将图像输入网络当中进行预测!
            #---------------------------------------------------------#
            outputs = self.net(images)
            outputs = self.bbox_util.decode_box(outputs)
            #---------------------------------------------------------#
            #   将预测框进行堆叠,然后进行非极大抑制
            #---------------------------------------------------------#
            results = self.bbox_util.non_max_suppression(
                torch.cat(outputs, 1),
                self.num_classes,
                self.input_shape,
                image_shape,
                self.letterbox_image,
                conf_thres=self.confidence,
                nms_thres=self.nms_iou)

        t1 = time.time()
        for _ in range(test_interval):
            with torch.no_grad():
                #---------------------------------------------------------#
                #   将图像输入网络当中进行预测!
                #---------------------------------------------------------#
                outputs = self.net(images)
                outputs = self.bbox_util.decode_box(outputs)
                #---------------------------------------------------------#
                #   将预测框进行堆叠,然后进行非极大抑制
                #---------------------------------------------------------#
                results = self.bbox_util.non_max_suppression(
                    torch.cat(outputs, 1),
                    self.num_classes,
                    self.input_shape,
                    image_shape,
                    self.letterbox_image,
                    conf_thres=self.confidence,
                    nms_thres=self.nms_iou)

        t2 = time.time()
        tact_time = (t2 - t1) / test_interval
        return tact_time

    def get_map_txt(self, image_id, image, class_names, map_out_path):
        f = open(
            os.path.join(map_out_path,
                         "detection-results/" + image_id + ".txt"), "w")
        image_shape = np.array(np.shape(image)[0:2])
        #---------------------------------------------------------#
        #   在这里将图像转换成RGB图像,防止灰度图在预测时报错。
        #   代码仅仅支持RGB图像的预测,所有其它类型的图像都会转化成RGB
        #---------------------------------------------------------#
        image = cvtColor(image)
        #---------------------------------------------------------#
        #   给图像增加灰条,实现不失真的resize
        #   也可以直接resize进行识别
        #---------------------------------------------------------#
        image_data = resize_image(image,
                                  (self.input_shape[1], self.input_shape[0]),
                                  self.letterbox_image)
        #---------------------------------------------------------#
        #   添加上batch_size维度
        #---------------------------------------------------------#
        image_data = np.expand_dims(
            np.transpose(
                preprocess_input(np.array(image_data, dtype='float32')),
                (2, 0, 1)), 0)

        with torch.no_grad():
            images = torch.from_numpy(image_data)
            if self.cuda:
                images = images.cuda()
            #---------------------------------------------------------#
            #   将图像输入网络当中进行预测!
            #---------------------------------------------------------#
            outputs = self.net(images)
            outputs = self.bbox_util.decode_box(outputs)
            #---------------------------------------------------------#
            #   将预测框进行堆叠,然后进行非极大抑制
            #---------------------------------------------------------#
            results = self.bbox_util.non_max_suppression(
                torch.cat(outputs, 1),
                self.num_classes,
                self.input_shape,
                image_shape,
                self.letterbox_image,
                conf_thres=self.confidence,
                nms_thres=self.nms_iou)

            if results[0] is None:
                return

            top_label = np.array(results[0][:, 6], dtype='int32')
            top_conf = results[0][:, 4] * results[0][:, 5]
            top_boxes = results[0][:, :4]

        for i, c in list(enumerate(top_label)):
            predicted_class = self.class_names[int(c)]
            box = top_boxes[i]
            score = str(top_conf[i])

            top, left, bottom, right = box
            if predicted_class not in class_names:
                continue

            f.write("%s %s %s %s %s %s\n" %
                    (predicted_class, score[:6], str(int(left)), str(
                        int(top)), str(int(right)), str(int(bottom))))

        f.close()
        return
#--------------------------------------------#
#   该部分代码用于看网络结构
#--------------------------------------------#
import torch
from torchsummary import summary

from nets.yolo import YoloBody

if __name__ == "__main__":
    # 需要使用device来指定网络在GPU还是CPU运行
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    m = YoloBody([[3, 4, 5], [1, 2, 3]], 80).to(device)
    summary(m, input_size=(3, 416, 416))
Beispiel #7
0
    #----------------------------------------------------#
    #   获得图片路径和标签
    #----------------------------------------------------#
    train_annotation_path = '2007_train.txt'
    val_annotation_path = '2007_val.txt'

    #----------------------------------------------------#
    #   获取classes和anchor
    #----------------------------------------------------#
    class_names, num_classes = get_classes(classes_path)
    anchors, num_anchors = get_anchors(anchors_path)

    #------------------------------------------------------#
    #   创建yolo模型
    #------------------------------------------------------#
    model = YoloBody(anchors_mask, num_classes, pretrained=pretrained, phi=phi)
    if not pretrained:
        weights_init(model)

    if model_path != '':
        #------------------------------------------------------#
        #   权值文件请看README,百度网盘下载
        #------------------------------------------------------#
        print('Load weights {}.'.format(model_path))
        device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        model_dict = model.state_dict()
        pretrained_dict = torch.load(model_path, map_location=device)
        pretrained_dict = {
            k: v
            for k, v in pretrained_dict.items()
            if np.shape(model_dict[k]) == np.shape(v)
Beispiel #8
0
#--------------------------------------------#
#   该部分代码用于看网络结构
#--------------------------------------------#
import torch
from thop import clever_format, profile
from torchsummary import summary

from nets.yolo import YoloBody

if __name__ == "__main__":
    input_shape = [416, 416]
    anchors_mask = [[6, 7, 8], [3, 4, 5], [0, 1, 2]]
    num_classes = 80

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    m = YoloBody(anchors_mask, num_classes).to(device)
    summary(m, (3, input_shape[0], input_shape[1]))

    dummy_input = torch.randn(1, 3, input_shape[0], input_shape[1]).to(device)
    flops, params = profile(m.to(device), (dummy_input, ), verbose=False)
    #--------------------------------------------------------#
    #   flops * 2是因为profile没有将卷积作为两个operations
    #   有些论文将卷积算乘法、加法两个operations。此时乘2
    #   有些论文只考虑乘法的运算次数,忽略加法。此时不乘2
    #   本代码选择乘2,参考YOLOX。
    #--------------------------------------------------------#
    flops = flops * 2
    flops, params = clever_format([flops, params], "%.3f")
    print('Total GFLOPS: %s' % (flops))
    print('Total params: %s' % (params))
Beispiel #9
0
#--------------------------------------------#
#   该部分代码用于看网络结构
#--------------------------------------------#
import torch
from torchsummary import summary

from nets.yolo import YoloBody

if __name__ == "__main__":
    # 需要使用device来指定网络在GPU还是CPU运行
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    m = YoloBody([[6, 7, 8], [3, 4, 5], [0, 1, 2]], 80).to(device)
    summary(m, input_size=(3, 416, 416))
Beispiel #10
0
class YOLO(object):
    _defaults = {
        #--------------------------------------------------------------------------#
        #   使用自己训练好的模型进行预测一定要修改model_path和classes_path!
        #   model_path指向logs文件夹下的权值文件,classes_path指向model_data下的txt
        #
        #   训练好后logs文件夹下存在多个权值文件,选择验证集损失较低的即可。
        #   验证集损失较低不代表mAP较高,仅代表该权值在验证集上泛化性能较好。
        #   如果出现shape不匹配,同时要注意训练时的model_path和classes_path参数的修改
        #--------------------------------------------------------------------------#
        "model_path"        : 'model_data/yolo_weights.pth',
        "classes_path"      : 'model_data/coco_classes.txt',
        #---------------------------------------------------------------------#
        #   anchors_path代表先验框对应的txt文件,一般不修改。
        #   anchors_mask用于帮助代码找到对应的先验框,一般不修改。
        #---------------------------------------------------------------------#
        "anchors_path"      : 'model_data/yolo_anchors.txt',
        "anchors_mask"      : [[6, 7, 8], [3, 4, 5], [0, 1, 2]],
        #---------------------------------------------------------------------#
        #   输入图片的大小,必须为32的倍数。
        #---------------------------------------------------------------------#
        "input_shape"       : [416, 416],
        #---------------------------------------------------------------------#
        #   只有得分大于置信度的预测框会被保留下来
        #---------------------------------------------------------------------#
        "confidence"        : 0.5,
        #---------------------------------------------------------------------#
        #   非极大抑制所用到的nms_iou大小
        #---------------------------------------------------------------------#
        "nms_iou"           : 0.3,
        #---------------------------------------------------------------------#
        #   该变量用于控制是否使用letterbox_image对输入图像进行不失真的resize,
        #   在多次测试后,发现关闭letterbox_image直接resize的效果更好
        #---------------------------------------------------------------------#
        "letterbox_image"   : False,
        #-------------------------------#
        #   是否使用Cuda
        #   没有GPU可以设置成False
        #-------------------------------#
        "cuda"              : True,
    }

    @classmethod
    def get_defaults(cls, n):
        if n in cls._defaults:
            return cls._defaults[n]
        else:
            return "Unrecognized attribute name '" + n + "'"

    #---------------------------------------------------#
    #   初始化YOLO
    #---------------------------------------------------#
    def __init__(self, **kwargs):
        self.__dict__.update(self._defaults)
        for name, value in kwargs.items():
            setattr(self, name, value)
            self._defaults[name] = value 
            
        #---------------------------------------------------#
        #   获得种类和先验框的数量
        #---------------------------------------------------#
        self.class_names, self.num_classes  = get_classes(self.classes_path)
        self.anchors, self.num_anchors      = get_anchors(self.anchors_path)
        self.bbox_util                      = DecodeBox(self.anchors, self.num_classes, (self.input_shape[0], self.input_shape[1]), self.anchors_mask)

        #---------------------------------------------------#
        #   画框设置不同的颜色
        #---------------------------------------------------#
        hsv_tuples = [(x / self.num_classes, 1., 1.) for x in range(self.num_classes)]
        self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
        self.colors = list(map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)), self.colors))
        self.generate()
        
        show_config(**self._defaults)

    #---------------------------------------------------#
    #   生成模型
    #---------------------------------------------------#
    def generate(self, onnx=False):
        #---------------------------------------------------#
        #   建立yolov3模型,载入yolov3模型的权重
        #---------------------------------------------------#
        self.net    = YoloBody(self.anchors_mask, self.num_classes)
        device      = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        self.net.load_state_dict(torch.load(self.model_path, map_location=device))
        self.net    = self.net.eval()
        print('{} model, anchors, and classes loaded.'.format(self.model_path))
        if not onnx:
            if self.cuda:
                self.net = nn.DataParallel(self.net)
                self.net = self.net.cuda()

    #---------------------------------------------------#
    #   检测图片
    #---------------------------------------------------#
    def detect_image(self, image, crop = False, count = False):
        image_shape = np.array(np.shape(image)[0:2])
        #---------------------------------------------------------#
        #   在这里将图像转换成RGB图像,防止灰度图在预测时报错。
        #   代码仅仅支持RGB图像的预测,所有其它类型的图像都会转化成RGB
        #---------------------------------------------------------#
        image       = cvtColor(image)
        #---------------------------------------------------------#
        #   给图像增加灰条,实现不失真的resize
        #   也可以直接resize进行识别
        #---------------------------------------------------------#
        image_data  = resize_image(image, (self.input_shape[1],self.input_shape[0]), self.letterbox_image)
        #---------------------------------------------------------#
        #   添加上batch_size维度
        #---------------------------------------------------------#
        image_data  = np.expand_dims(np.transpose(preprocess_input(np.array(image_data, dtype='float32')), (2, 0, 1)), 0)

        with torch.no_grad():
            images = torch.from_numpy(image_data)
            if self.cuda:
                images = images.cuda()
            #---------------------------------------------------------#
            #   将图像输入网络当中进行预测!
            #---------------------------------------------------------#
            outputs = self.net(images)
            outputs = self.bbox_util.decode_box(outputs)
            #---------------------------------------------------------#
            #   将预测框进行堆叠,然后进行非极大抑制
            #---------------------------------------------------------#
            results = self.bbox_util.non_max_suppression(torch.cat(outputs, 1), self.num_classes, self.input_shape, 
                        image_shape, self.letterbox_image, conf_thres = self.confidence, nms_thres = self.nms_iou)
                                                    
            if results[0] is None: 
                return image

            top_label   = np.array(results[0][:, 6], dtype = 'int32')
            top_conf    = results[0][:, 4] * results[0][:, 5]
            top_boxes   = results[0][:, :4]
        #---------------------------------------------------------#
        #   设置字体与边框厚度
        #---------------------------------------------------------#
        font        = ImageFont.truetype(font='model_data/simhei.ttf', size=np.floor(3e-2 * image.size[1] + 0.5).astype('int32'))
        thickness   = int(max((image.size[0] + image.size[1]) // np.mean(self.input_shape), 1))
        #---------------------------------------------------------#
        #   计数
        #---------------------------------------------------------#
        if count:
            print("top_label:", top_label)
            classes_nums    = np.zeros([self.num_classes])
            for i in range(self.num_classes):
                num = np.sum(top_label == i)
                if num > 0:
                    print(self.class_names[i], " : ", num)
                classes_nums[i] = num
            print("classes_nums:", classes_nums)
        #---------------------------------------------------------#
        #   是否进行目标的裁剪
        #---------------------------------------------------------#
        if crop:
            for i, c in list(enumerate(top_label)):
                top, left, bottom, right = top_boxes[i]
                top     = max(0, np.floor(top).astype('int32'))
                left    = max(0, np.floor(left).astype('int32'))
                bottom  = min(image.size[1], np.floor(bottom).astype('int32'))
                right   = min(image.size[0], np.floor(right).astype('int32'))
                
                dir_save_path = "img_crop"
                if not os.path.exists(dir_save_path):
                    os.makedirs(dir_save_path)
                crop_image = image.crop([left, top, right, bottom])
                crop_image.save(os.path.join(dir_save_path, "crop_" + str(i) + ".png"), quality=95, subsampling=0)
                print("save crop_" + str(i) + ".png to " + dir_save_path)
        #---------------------------------------------------------#
        #   图像绘制
        #---------------------------------------------------------#
        for i, c in list(enumerate(top_label)):
            predicted_class = self.class_names[int(c)]
            box             = top_boxes[i]
            score           = top_conf[i]

            top, left, bottom, right = box

            top     = max(0, np.floor(top).astype('int32'))
            left    = max(0, np.floor(left).astype('int32'))
            bottom  = min(image.size[1], np.floor(bottom).astype('int32'))
            right   = min(image.size[0], np.floor(right).astype('int32'))

            label = '{} {:.2f}'.format(predicted_class, score)
            draw = ImageDraw.Draw(image)
            label_size = draw.textsize(label, font)
            label = label.encode('utf-8')
            print(label, top, left, bottom, right)
            
            if top - label_size[1] >= 0:
                text_origin = np.array([left, top - label_size[1]])
            else:
                text_origin = np.array([left, top + 1])

            for i in range(thickness):
                draw.rectangle([left + i, top + i, right - i, bottom - i], outline=self.colors[c])
            draw.rectangle([tuple(text_origin), tuple(text_origin + label_size)], fill=self.colors[c])
            draw.text(text_origin, str(label,'UTF-8'), fill=(0, 0, 0), font=font)
            del draw

        return image

    def get_FPS(self, image, test_interval):
        image_shape = np.array(np.shape(image)[0:2])
        #---------------------------------------------------------#
        #   在这里将图像转换成RGB图像,防止灰度图在预测时报错。
        #   代码仅仅支持RGB图像的预测,所有其它类型的图像都会转化成RGB
        #---------------------------------------------------------#
        image       = cvtColor(image)
        #---------------------------------------------------------#
        #   给图像增加灰条,实现不失真的resize
        #   也可以直接resize进行识别
        #---------------------------------------------------------#
        image_data  = resize_image(image, (self.input_shape[1],self.input_shape[0]), self.letterbox_image)
        #---------------------------------------------------------#
        #   添加上batch_size维度
        #---------------------------------------------------------#
        image_data  = np.expand_dims(np.transpose(preprocess_input(np.array(image_data, dtype='float32')), (2, 0, 1)), 0)

        with torch.no_grad():
            images = torch.from_numpy(image_data)
            if self.cuda:
                images = images.cuda()
            #---------------------------------------------------------#
            #   将图像输入网络当中进行预测!
            #---------------------------------------------------------#
            outputs = self.net(images)
            outputs = self.bbox_util.decode_box(outputs)
            #---------------------------------------------------------#
            #   将预测框进行堆叠,然后进行非极大抑制
            #---------------------------------------------------------#
            results = self.bbox_util.non_max_suppression(torch.cat(outputs, 1), self.num_classes, self.input_shape, 
                        image_shape, self.letterbox_image, conf_thres=self.confidence, nms_thres=self.nms_iou)
                                                    
        t1 = time.time()
        for _ in range(test_interval):
            with torch.no_grad():
                #---------------------------------------------------------#
                #   将图像输入网络当中进行预测!
                #---------------------------------------------------------#
                outputs = self.net(images)
                outputs = self.bbox_util.decode_box(outputs)
                #---------------------------------------------------------#
                #   将预测框进行堆叠,然后进行非极大抑制
                #---------------------------------------------------------#
                results = self.bbox_util.non_max_suppression(torch.cat(outputs, 1), self.num_classes, self.input_shape, 
                            image_shape, self.letterbox_image, conf_thres=self.confidence, nms_thres=self.nms_iou)
                            
        t2 = time.time()
        tact_time = (t2 - t1) / test_interval
        return tact_time

    def detect_heatmap(self, image, heatmap_save_path):
        import cv2
        import matplotlib.pyplot as plt
        def sigmoid(x):
            y = 1.0 / (1.0 + np.exp(-x))
            return y
        #---------------------------------------------------------#
        #   在这里将图像转换成RGB图像,防止灰度图在预测时报错。
        #   代码仅仅支持RGB图像的预测,所有其它类型的图像都会转化成RGB
        #---------------------------------------------------------#
        image       = cvtColor(image)
        #---------------------------------------------------------#
        #   给图像增加灰条,实现不失真的resize
        #   也可以直接resize进行识别
        #---------------------------------------------------------#
        image_data  = resize_image(image, (self.input_shape[1],self.input_shape[0]), self.letterbox_image)
        #---------------------------------------------------------#
        #   添加上batch_size维度
        #---------------------------------------------------------#
        image_data  = np.expand_dims(np.transpose(preprocess_input(np.array(image_data, dtype='float32')), (2, 0, 1)), 0)

        with torch.no_grad():
            images = torch.from_numpy(image_data)
            if self.cuda:
                images = images.cuda()
            #---------------------------------------------------------#
            #   将图像输入网络当中进行预测!
            #---------------------------------------------------------#
            outputs = self.net(images)
        
        plt.imshow(image, alpha=1)
        plt.axis('off')
        mask    = np.zeros((image.size[1], image.size[0]))
        for sub_output in outputs:
            sub_output = sub_output.cpu().numpy()
            b, c, h, w = np.shape(sub_output)
            sub_output = np.transpose(np.reshape(sub_output, [b, 3, -1, h, w]), [0, 3, 4, 1, 2])[0]
            score      = np.max(sigmoid(sub_output[..., 4]), -1)
            score      = cv2.resize(score, (image.size[0], image.size[1]))
            normed_score    = (score * 255).astype('uint8')
            mask            = np.maximum(mask, normed_score)
            
        plt.imshow(mask, alpha=0.5, interpolation='nearest', cmap="jet")

        plt.axis('off')
        plt.subplots_adjust(top=1, bottom=0, right=1,  left=0, hspace=0, wspace=0)
        plt.margins(0, 0)
        plt.savefig(heatmap_save_path, dpi=200, bbox_inches='tight', pad_inches = -0.1)
        print("Save to the " + heatmap_save_path)
        plt.show()

    def convert_to_onnx(self, simplify, model_path):
        import onnx
        self.generate(onnx=True)

        im                  = torch.zeros(1, 3, *self.input_shape).to('cpu')  # image size(1, 3, 512, 512) BCHW
        input_layer_names   = ["images"]
        output_layer_names  = ["output"]
        
        # Export the model
        print(f'Starting export with onnx {onnx.__version__}.')
        torch.onnx.export(self.net,
                        im,
                        f               = model_path,
                        verbose         = False,
                        opset_version   = 12,
                        training        = torch.onnx.TrainingMode.EVAL,
                        do_constant_folding = True,
                        input_names     = input_layer_names,
                        output_names    = output_layer_names,
                        dynamic_axes    = None)

        # Checks
        model_onnx = onnx.load(model_path)  # load onnx model
        onnx.checker.check_model(model_onnx)  # check onnx model

        # Simplify onnx
        if simplify:
            import onnxsim
            print(f'Simplifying with onnx-simplifier {onnxsim.__version__}.')
            model_onnx, check = onnxsim.simplify(
                model_onnx,
                dynamic_input_shape=False,
                input_shapes=None)
            assert check, 'assert check failed'
            onnx.save(model_onnx, model_path)

        print('Onnx model save as {}'.format(model_path))

    def get_map_txt(self, image_id, image, class_names, map_out_path):
        f = open(os.path.join(map_out_path, "detection-results/"+image_id+".txt"),"w") 
        image_shape = np.array(np.shape(image)[0:2])
        #---------------------------------------------------------#
        #   在这里将图像转换成RGB图像,防止灰度图在预测时报错。
        #   代码仅仅支持RGB图像的预测,所有其它类型的图像都会转化成RGB
        #---------------------------------------------------------#
        image       = cvtColor(image)
        #---------------------------------------------------------#
        #   给图像增加灰条,实现不失真的resize
        #   也可以直接resize进行识别
        #---------------------------------------------------------#
        image_data  = resize_image(image, (self.input_shape[1],self.input_shape[0]), self.letterbox_image)
        #---------------------------------------------------------#
        #   添加上batch_size维度
        #---------------------------------------------------------#
        image_data  = np.expand_dims(np.transpose(preprocess_input(np.array(image_data, dtype='float32')), (2, 0, 1)), 0)

        with torch.no_grad():
            images = torch.from_numpy(image_data)
            if self.cuda:
                images = images.cuda()
            #---------------------------------------------------------#
            #   将图像输入网络当中进行预测!
            #---------------------------------------------------------#
            outputs = self.net(images)
            outputs = self.bbox_util.decode_box(outputs)
            #---------------------------------------------------------#
            #   将预测框进行堆叠,然后进行非极大抑制
            #---------------------------------------------------------#
            results = self.bbox_util.non_max_suppression(torch.cat(outputs, 1), self.num_classes, self.input_shape, 
                        image_shape, self.letterbox_image, conf_thres = self.confidence, nms_thres = self.nms_iou)
                                                    
            if results[0] is None: 
                return 

            top_label   = np.array(results[0][:, 6], dtype = 'int32')
            top_conf    = results[0][:, 4] * results[0][:, 5]
            top_boxes   = results[0][:, :4]

        for i, c in list(enumerate(top_label)):
            predicted_class = self.class_names[int(c)]
            box             = top_boxes[i]
            score           = str(top_conf[i])

            top, left, bottom, right = box
            if predicted_class not in class_names:
                continue

            f.write("%s %s %s %s %s %s\n" % (predicted_class, score[:6], str(int(left)), str(int(top)), str(int(right)),str(int(bottom))))

        f.close()
        return