def generate(self): self.net = YoloBody(self.anchors_mask, self.num_classes, self.backbone) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') self.net.load_state_dict( torch.load(self.model_path, map_location=device)) self.net = self.net.eval() print('{} model, anchors, and classes loaded.'.format(self.model_path)) if self.cuda: self.net = nn.DataParallel(self.net) self.net = self.net.cuda()
def generate(self, onnx=False): #---------------------------------------------------# # 建立yolov3模型,载入yolov3模型的权重 #---------------------------------------------------# self.net = YoloBody(self.anchors_mask, self.num_classes) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') self.net.load_state_dict(torch.load(self.model_path, map_location=device)) self.net = self.net.eval() print('{} model, anchors, and classes loaded.'.format(self.model_path)) if not onnx: if self.cuda: self.net = nn.DataParallel(self.net) self.net = self.net.cuda()
#----------------------------------------------------# # 获得图片路径和标签 #----------------------------------------------------# train_annotation_path = '2007_train.txt' val_annotation_path = '2007_val.txt' #----------------------------------------------------# # 获取classes和anchor #----------------------------------------------------# class_names, num_classes = get_classes(classes_path) anchors, num_anchors = get_anchors(anchors_path) #------------------------------------------------------# # 创建yolo模型 #------------------------------------------------------# model = YoloBody(anchors_mask, num_classes) weights_init(model) if model_path != '': #------------------------------------------------------# # 权值文件请看README,百度网盘下载 #------------------------------------------------------# print('Load weights {}.'.format(model_path)) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model_dict = model.state_dict() pretrained_dict = torch.load(model_path, map_location=device) pretrained_dict = { k: v for k, v in pretrained_dict.items() if np.shape(model_dict[k]) == np.shape(v) } model_dict.update(pretrained_dict)
# train_annotation_path 训练图片路径和标签 # val_annotation_path 训练图片路径和标签 #------------------------------------------------------# train_annotation_path = '2007_train.txt' val_annotation_path = '2007_val.txt' #----------------------------------------------------# # 获取classes和anchor #----------------------------------------------------# class_names, num_classes = get_classes(classes_path) anchors, num_anchors = get_anchors(anchors_path) #------------------------------------------------------# # 创建yolo模型 #------------------------------------------------------# model = YoloBody(anchors_mask, num_classes, backbone = backbone, pretrained = pretrained) if not pretrained: weights_init(model) if model_path != '': #------------------------------------------------------# # 权值文件请看README,百度网盘下载 #------------------------------------------------------# print('Load weights {}.'.format(model_path)) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model_dict = model.state_dict() pretrained_dict = torch.load(model_path, map_location = device) pretrained_dict = {k: v for k, v in pretrained_dict.items() if np.shape(model_dict[k]) == np.shape(v)} model_dict.update(pretrained_dict) model.load_state_dict(model_dict) yolo_loss = YOLOLoss(anchors, num_classes, input_shape, Cuda, anchors_mask, label_smoothing)
class YOLO(object): _defaults = { #--------------------------------------------------------------------------# # 使用自己训练好的模型进行预测一定要修改model_path和classes_path! # model_path指向logs文件夹下的权值文件,classes_path指向model_data下的txt # # 训练好后logs文件夹下存在多个权值文件,选择验证集损失较低的即可。 # 验证集损失较低不代表mAP较高,仅代表该权值在验证集上泛化性能较好。 # 如果出现shape不匹配,同时要注意训练时的model_path和classes_path参数的修改 #--------------------------------------------------------------------------# "model_path": 'model_data/yolo4_weights.pth', "classes_path": 'model_data/coco_classes.txt', #---------------------------------------------------------------------# # anchors_path代表先验框对应的txt文件,一般不修改。 # anchors_mask用于帮助代码找到对应的先验框,一般不修改。 #---------------------------------------------------------------------# "anchors_path": 'model_data/yolo_anchors.txt', "anchors_mask": [[6, 7, 8], [3, 4, 5], [0, 1, 2]], #---------------------------------------------------------------------# # 输入图片的大小,必须为32的倍数。 #---------------------------------------------------------------------# "input_shape": [416, 416], #---------------------------------------------------------------------# # 只有得分大于置信度的预测框会被保留下来 #---------------------------------------------------------------------# "confidence": 0.5, #---------------------------------------------------------------------# # 非极大抑制所用到的nms_iou大小 #---------------------------------------------------------------------# "nms_iou": 0.3, #---------------------------------------------------------------------# # 该变量用于控制是否使用letterbox_image对输入图像进行不失真的resize, # 在多次测试后,发现关闭letterbox_image直接resize的效果更好 #---------------------------------------------------------------------# "letterbox_image": False, #-------------------------------# # 是否使用Cuda # 没有GPU可以设置成False #-------------------------------# "cuda": True, } @classmethod def get_defaults(cls, n): if n in cls._defaults: return cls._defaults[n] else: return "Unrecognized attribute name '" + n + "'" #---------------------------------------------------# # 初始化YOLO #---------------------------------------------------# def __init__(self, **kwargs): self.__dict__.update(self._defaults) for name, value in kwargs.items(): setattr(self, name, value) #---------------------------------------------------# # 获得种类和先验框的数量 #---------------------------------------------------# self.class_names, self.num_classes = get_classes(self.classes_path) self.anchors, self.num_anchors = get_anchors(self.anchors_path) self.bbox_util = DecodeBox(self.anchors, self.num_classes, (self.input_shape[0], self.input_shape[1]), self.anchors_mask) #---------------------------------------------------# # 画框设置不同的颜色 #---------------------------------------------------# hsv_tuples = [(x / self.num_classes, 1., 1.) for x in range(self.num_classes)] self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples)) self.colors = list( map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)), self.colors)) self.generate() #---------------------------------------------------# # 生成模型 #---------------------------------------------------# def generate(self): #---------------------------------------------------# # 建立yolo模型,载入yolo模型的权重 #---------------------------------------------------# self.net = YoloBody(self.anchors_mask, self.num_classes) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') self.net.load_state_dict( torch.load(self.model_path, map_location=device)) self.net = self.net.eval() print('{} model, anchors, and classes loaded.'.format(self.model_path)) if self.cuda: self.net = nn.DataParallel(self.net) self.net = self.net.cuda() #---------------------------------------------------# # 检测图片 #---------------------------------------------------# def detect_image(self, image): #---------------------------------------------------# # 计算输入图片的高和宽 #---------------------------------------------------# image_shape = np.array(np.shape(image)[0:2]) #---------------------------------------------------------# # 在这里将图像转换成RGB图像,防止灰度图在预测时报错。 # 代码仅仅支持RGB图像的预测,所有其它类型的图像都会转化成RGB #---------------------------------------------------------# image = cvtColor(image) #---------------------------------------------------------# # 给图像增加灰条,实现不失真的resize # 也可以直接resize进行识别 #---------------------------------------------------------# image_data = resize_image(image, (self.input_shape[1], self.input_shape[0]), self.letterbox_image) #---------------------------------------------------------# # 添加上batch_size维度 #---------------------------------------------------------# image_data = np.expand_dims( np.transpose( preprocess_input(np.array(image_data, dtype='float32')), (2, 0, 1)), 0) with torch.no_grad(): images = torch.from_numpy(image_data) if self.cuda: images = images.cuda() #---------------------------------------------------------# # 将图像输入网络当中进行预测! #---------------------------------------------------------# outputs = self.net(images) outputs = self.bbox_util.decode_box(outputs) #---------------------------------------------------------# # 将预测框进行堆叠,然后进行非极大抑制 #---------------------------------------------------------# results = self.bbox_util.non_max_suppression( torch.cat(outputs, 1), self.num_classes, self.input_shape, image_shape, self.letterbox_image, conf_thres=self.confidence, nms_thres=self.nms_iou) if results[0] is None: return image top_label = np.array(results[0][:, 6], dtype='int32') top_conf = results[0][:, 4] * results[0][:, 5] top_boxes = results[0][:, :4] #---------------------------------------------------------# # 设置字体与边框厚度 #---------------------------------------------------------# font = ImageFont.truetype(font='model_data/simhei.ttf', size=np.floor(3e-2 * image.size[1] + 0.5).astype('int32')) thickness = int( max((image.size[0] + image.size[1]) // np.mean(self.input_shape), 1)) #---------------------------------------------------------# # 图像绘制 #---------------------------------------------------------# for i, c in list(enumerate(top_label)): predicted_class = self.class_names[int(c)] box = top_boxes[i] score = top_conf[i] top, left, bottom, right = box top = max(0, np.floor(top).astype('int32')) left = max(0, np.floor(left).astype('int32')) bottom = min(image.size[1], np.floor(bottom).astype('int32')) right = min(image.size[0], np.floor(right).astype('int32')) label = '{} {:.2f}'.format(predicted_class, score) draw = ImageDraw.Draw(image) label_size = draw.textsize(label, font) label = label.encode('utf-8') print(label, top, left, bottom, right) if top - label_size[1] >= 0: text_origin = np.array([left, top - label_size[1]]) else: text_origin = np.array([left, top + 1]) for i in range(thickness): draw.rectangle([left + i, top + i, right - i, bottom - i], outline=self.colors[c]) draw.rectangle( [tuple(text_origin), tuple(text_origin + label_size)], fill=self.colors[c]) draw.text(text_origin, str(label, 'UTF-8'), fill=(0, 0, 0), font=font) del draw return image def get_FPS(self, image, test_interval): image_shape = np.array(np.shape(image)[0:2]) #---------------------------------------------------------# # 在这里将图像转换成RGB图像,防止灰度图在预测时报错。 # 代码仅仅支持RGB图像的预测,所有其它类型的图像都会转化成RGB #---------------------------------------------------------# image = cvtColor(image) #---------------------------------------------------------# # 给图像增加灰条,实现不失真的resize # 也可以直接resize进行识别 #---------------------------------------------------------# image_data = resize_image(image, (self.input_shape[1], self.input_shape[0]), self.letterbox_image) #---------------------------------------------------------# # 添加上batch_size维度 #---------------------------------------------------------# image_data = np.expand_dims( np.transpose( preprocess_input(np.array(image_data, dtype='float32')), (2, 0, 1)), 0) with torch.no_grad(): images = torch.from_numpy(image_data) if self.cuda: images = images.cuda() #---------------------------------------------------------# # 将图像输入网络当中进行预测! #---------------------------------------------------------# outputs = self.net(images) outputs = self.bbox_util.decode_box(outputs) #---------------------------------------------------------# # 将预测框进行堆叠,然后进行非极大抑制 #---------------------------------------------------------# results = self.bbox_util.non_max_suppression( torch.cat(outputs, 1), self.num_classes, self.input_shape, image_shape, self.letterbox_image, conf_thres=self.confidence, nms_thres=self.nms_iou) t1 = time.time() for _ in range(test_interval): with torch.no_grad(): #---------------------------------------------------------# # 将图像输入网络当中进行预测! #---------------------------------------------------------# outputs = self.net(images) outputs = self.bbox_util.decode_box(outputs) #---------------------------------------------------------# # 将预测框进行堆叠,然后进行非极大抑制 #---------------------------------------------------------# results = self.bbox_util.non_max_suppression( torch.cat(outputs, 1), self.num_classes, self.input_shape, image_shape, self.letterbox_image, conf_thres=self.confidence, nms_thres=self.nms_iou) t2 = time.time() tact_time = (t2 - t1) / test_interval return tact_time def get_map_txt(self, image_id, image, class_names, map_out_path): f = open( os.path.join(map_out_path, "detection-results/" + image_id + ".txt"), "w") image_shape = np.array(np.shape(image)[0:2]) #---------------------------------------------------------# # 在这里将图像转换成RGB图像,防止灰度图在预测时报错。 # 代码仅仅支持RGB图像的预测,所有其它类型的图像都会转化成RGB #---------------------------------------------------------# image = cvtColor(image) #---------------------------------------------------------# # 给图像增加灰条,实现不失真的resize # 也可以直接resize进行识别 #---------------------------------------------------------# image_data = resize_image(image, (self.input_shape[1], self.input_shape[0]), self.letterbox_image) #---------------------------------------------------------# # 添加上batch_size维度 #---------------------------------------------------------# image_data = np.expand_dims( np.transpose( preprocess_input(np.array(image_data, dtype='float32')), (2, 0, 1)), 0) with torch.no_grad(): images = torch.from_numpy(image_data) if self.cuda: images = images.cuda() #---------------------------------------------------------# # 将图像输入网络当中进行预测! #---------------------------------------------------------# outputs = self.net(images) outputs = self.bbox_util.decode_box(outputs) #---------------------------------------------------------# # 将预测框进行堆叠,然后进行非极大抑制 #---------------------------------------------------------# results = self.bbox_util.non_max_suppression( torch.cat(outputs, 1), self.num_classes, self.input_shape, image_shape, self.letterbox_image, conf_thres=self.confidence, nms_thres=self.nms_iou) if results[0] is None: return top_label = np.array(results[0][:, 6], dtype='int32') top_conf = results[0][:, 4] * results[0][:, 5] top_boxes = results[0][:, :4] for i, c in list(enumerate(top_label)): predicted_class = self.class_names[int(c)] box = top_boxes[i] score = str(top_conf[i]) top, left, bottom, right = box if predicted_class not in class_names: continue f.write("%s %s %s %s %s %s\n" % (predicted_class, score[:6], str(int(left)), str( int(top)), str(int(right)), str(int(bottom)))) f.close() return
#--------------------------------------------# # 该部分代码用于看网络结构 #--------------------------------------------# import torch from torchsummary import summary from nets.yolo import YoloBody if __name__ == "__main__": # 需要使用device来指定网络在GPU还是CPU运行 device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') m = YoloBody([[3, 4, 5], [1, 2, 3]], 80).to(device) summary(m, input_size=(3, 416, 416))
#----------------------------------------------------# # 获得图片路径和标签 #----------------------------------------------------# train_annotation_path = '2007_train.txt' val_annotation_path = '2007_val.txt' #----------------------------------------------------# # 获取classes和anchor #----------------------------------------------------# class_names, num_classes = get_classes(classes_path) anchors, num_anchors = get_anchors(anchors_path) #------------------------------------------------------# # 创建yolo模型 #------------------------------------------------------# model = YoloBody(anchors_mask, num_classes, pretrained=pretrained, phi=phi) if not pretrained: weights_init(model) if model_path != '': #------------------------------------------------------# # 权值文件请看README,百度网盘下载 #------------------------------------------------------# print('Load weights {}.'.format(model_path)) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model_dict = model.state_dict() pretrained_dict = torch.load(model_path, map_location=device) pretrained_dict = { k: v for k, v in pretrained_dict.items() if np.shape(model_dict[k]) == np.shape(v)
#--------------------------------------------# # 该部分代码用于看网络结构 #--------------------------------------------# import torch from thop import clever_format, profile from torchsummary import summary from nets.yolo import YoloBody if __name__ == "__main__": input_shape = [416, 416] anchors_mask = [[6, 7, 8], [3, 4, 5], [0, 1, 2]] num_classes = 80 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") m = YoloBody(anchors_mask, num_classes).to(device) summary(m, (3, input_shape[0], input_shape[1])) dummy_input = torch.randn(1, 3, input_shape[0], input_shape[1]).to(device) flops, params = profile(m.to(device), (dummy_input, ), verbose=False) #--------------------------------------------------------# # flops * 2是因为profile没有将卷积作为两个operations # 有些论文将卷积算乘法、加法两个operations。此时乘2 # 有些论文只考虑乘法的运算次数,忽略加法。此时不乘2 # 本代码选择乘2,参考YOLOX。 #--------------------------------------------------------# flops = flops * 2 flops, params = clever_format([flops, params], "%.3f") print('Total GFLOPS: %s' % (flops)) print('Total params: %s' % (params))
#--------------------------------------------# # 该部分代码用于看网络结构 #--------------------------------------------# import torch from torchsummary import summary from nets.yolo import YoloBody if __name__ == "__main__": # 需要使用device来指定网络在GPU还是CPU运行 device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') m = YoloBody([[6, 7, 8], [3, 4, 5], [0, 1, 2]], 80).to(device) summary(m, input_size=(3, 416, 416))
class YOLO(object): _defaults = { #--------------------------------------------------------------------------# # 使用自己训练好的模型进行预测一定要修改model_path和classes_path! # model_path指向logs文件夹下的权值文件,classes_path指向model_data下的txt # # 训练好后logs文件夹下存在多个权值文件,选择验证集损失较低的即可。 # 验证集损失较低不代表mAP较高,仅代表该权值在验证集上泛化性能较好。 # 如果出现shape不匹配,同时要注意训练时的model_path和classes_path参数的修改 #--------------------------------------------------------------------------# "model_path" : 'model_data/yolo_weights.pth', "classes_path" : 'model_data/coco_classes.txt', #---------------------------------------------------------------------# # anchors_path代表先验框对应的txt文件,一般不修改。 # anchors_mask用于帮助代码找到对应的先验框,一般不修改。 #---------------------------------------------------------------------# "anchors_path" : 'model_data/yolo_anchors.txt', "anchors_mask" : [[6, 7, 8], [3, 4, 5], [0, 1, 2]], #---------------------------------------------------------------------# # 输入图片的大小,必须为32的倍数。 #---------------------------------------------------------------------# "input_shape" : [416, 416], #---------------------------------------------------------------------# # 只有得分大于置信度的预测框会被保留下来 #---------------------------------------------------------------------# "confidence" : 0.5, #---------------------------------------------------------------------# # 非极大抑制所用到的nms_iou大小 #---------------------------------------------------------------------# "nms_iou" : 0.3, #---------------------------------------------------------------------# # 该变量用于控制是否使用letterbox_image对输入图像进行不失真的resize, # 在多次测试后,发现关闭letterbox_image直接resize的效果更好 #---------------------------------------------------------------------# "letterbox_image" : False, #-------------------------------# # 是否使用Cuda # 没有GPU可以设置成False #-------------------------------# "cuda" : True, } @classmethod def get_defaults(cls, n): if n in cls._defaults: return cls._defaults[n] else: return "Unrecognized attribute name '" + n + "'" #---------------------------------------------------# # 初始化YOLO #---------------------------------------------------# def __init__(self, **kwargs): self.__dict__.update(self._defaults) for name, value in kwargs.items(): setattr(self, name, value) self._defaults[name] = value #---------------------------------------------------# # 获得种类和先验框的数量 #---------------------------------------------------# self.class_names, self.num_classes = get_classes(self.classes_path) self.anchors, self.num_anchors = get_anchors(self.anchors_path) self.bbox_util = DecodeBox(self.anchors, self.num_classes, (self.input_shape[0], self.input_shape[1]), self.anchors_mask) #---------------------------------------------------# # 画框设置不同的颜色 #---------------------------------------------------# hsv_tuples = [(x / self.num_classes, 1., 1.) for x in range(self.num_classes)] self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples)) self.colors = list(map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)), self.colors)) self.generate() show_config(**self._defaults) #---------------------------------------------------# # 生成模型 #---------------------------------------------------# def generate(self, onnx=False): #---------------------------------------------------# # 建立yolov3模型,载入yolov3模型的权重 #---------------------------------------------------# self.net = YoloBody(self.anchors_mask, self.num_classes) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') self.net.load_state_dict(torch.load(self.model_path, map_location=device)) self.net = self.net.eval() print('{} model, anchors, and classes loaded.'.format(self.model_path)) if not onnx: if self.cuda: self.net = nn.DataParallel(self.net) self.net = self.net.cuda() #---------------------------------------------------# # 检测图片 #---------------------------------------------------# def detect_image(self, image, crop = False, count = False): image_shape = np.array(np.shape(image)[0:2]) #---------------------------------------------------------# # 在这里将图像转换成RGB图像,防止灰度图在预测时报错。 # 代码仅仅支持RGB图像的预测,所有其它类型的图像都会转化成RGB #---------------------------------------------------------# image = cvtColor(image) #---------------------------------------------------------# # 给图像增加灰条,实现不失真的resize # 也可以直接resize进行识别 #---------------------------------------------------------# image_data = resize_image(image, (self.input_shape[1],self.input_shape[0]), self.letterbox_image) #---------------------------------------------------------# # 添加上batch_size维度 #---------------------------------------------------------# image_data = np.expand_dims(np.transpose(preprocess_input(np.array(image_data, dtype='float32')), (2, 0, 1)), 0) with torch.no_grad(): images = torch.from_numpy(image_data) if self.cuda: images = images.cuda() #---------------------------------------------------------# # 将图像输入网络当中进行预测! #---------------------------------------------------------# outputs = self.net(images) outputs = self.bbox_util.decode_box(outputs) #---------------------------------------------------------# # 将预测框进行堆叠,然后进行非极大抑制 #---------------------------------------------------------# results = self.bbox_util.non_max_suppression(torch.cat(outputs, 1), self.num_classes, self.input_shape, image_shape, self.letterbox_image, conf_thres = self.confidence, nms_thres = self.nms_iou) if results[0] is None: return image top_label = np.array(results[0][:, 6], dtype = 'int32') top_conf = results[0][:, 4] * results[0][:, 5] top_boxes = results[0][:, :4] #---------------------------------------------------------# # 设置字体与边框厚度 #---------------------------------------------------------# font = ImageFont.truetype(font='model_data/simhei.ttf', size=np.floor(3e-2 * image.size[1] + 0.5).astype('int32')) thickness = int(max((image.size[0] + image.size[1]) // np.mean(self.input_shape), 1)) #---------------------------------------------------------# # 计数 #---------------------------------------------------------# if count: print("top_label:", top_label) classes_nums = np.zeros([self.num_classes]) for i in range(self.num_classes): num = np.sum(top_label == i) if num > 0: print(self.class_names[i], " : ", num) classes_nums[i] = num print("classes_nums:", classes_nums) #---------------------------------------------------------# # 是否进行目标的裁剪 #---------------------------------------------------------# if crop: for i, c in list(enumerate(top_label)): top, left, bottom, right = top_boxes[i] top = max(0, np.floor(top).astype('int32')) left = max(0, np.floor(left).astype('int32')) bottom = min(image.size[1], np.floor(bottom).astype('int32')) right = min(image.size[0], np.floor(right).astype('int32')) dir_save_path = "img_crop" if not os.path.exists(dir_save_path): os.makedirs(dir_save_path) crop_image = image.crop([left, top, right, bottom]) crop_image.save(os.path.join(dir_save_path, "crop_" + str(i) + ".png"), quality=95, subsampling=0) print("save crop_" + str(i) + ".png to " + dir_save_path) #---------------------------------------------------------# # 图像绘制 #---------------------------------------------------------# for i, c in list(enumerate(top_label)): predicted_class = self.class_names[int(c)] box = top_boxes[i] score = top_conf[i] top, left, bottom, right = box top = max(0, np.floor(top).astype('int32')) left = max(0, np.floor(left).astype('int32')) bottom = min(image.size[1], np.floor(bottom).astype('int32')) right = min(image.size[0], np.floor(right).astype('int32')) label = '{} {:.2f}'.format(predicted_class, score) draw = ImageDraw.Draw(image) label_size = draw.textsize(label, font) label = label.encode('utf-8') print(label, top, left, bottom, right) if top - label_size[1] >= 0: text_origin = np.array([left, top - label_size[1]]) else: text_origin = np.array([left, top + 1]) for i in range(thickness): draw.rectangle([left + i, top + i, right - i, bottom - i], outline=self.colors[c]) draw.rectangle([tuple(text_origin), tuple(text_origin + label_size)], fill=self.colors[c]) draw.text(text_origin, str(label,'UTF-8'), fill=(0, 0, 0), font=font) del draw return image def get_FPS(self, image, test_interval): image_shape = np.array(np.shape(image)[0:2]) #---------------------------------------------------------# # 在这里将图像转换成RGB图像,防止灰度图在预测时报错。 # 代码仅仅支持RGB图像的预测,所有其它类型的图像都会转化成RGB #---------------------------------------------------------# image = cvtColor(image) #---------------------------------------------------------# # 给图像增加灰条,实现不失真的resize # 也可以直接resize进行识别 #---------------------------------------------------------# image_data = resize_image(image, (self.input_shape[1],self.input_shape[0]), self.letterbox_image) #---------------------------------------------------------# # 添加上batch_size维度 #---------------------------------------------------------# image_data = np.expand_dims(np.transpose(preprocess_input(np.array(image_data, dtype='float32')), (2, 0, 1)), 0) with torch.no_grad(): images = torch.from_numpy(image_data) if self.cuda: images = images.cuda() #---------------------------------------------------------# # 将图像输入网络当中进行预测! #---------------------------------------------------------# outputs = self.net(images) outputs = self.bbox_util.decode_box(outputs) #---------------------------------------------------------# # 将预测框进行堆叠,然后进行非极大抑制 #---------------------------------------------------------# results = self.bbox_util.non_max_suppression(torch.cat(outputs, 1), self.num_classes, self.input_shape, image_shape, self.letterbox_image, conf_thres=self.confidence, nms_thres=self.nms_iou) t1 = time.time() for _ in range(test_interval): with torch.no_grad(): #---------------------------------------------------------# # 将图像输入网络当中进行预测! #---------------------------------------------------------# outputs = self.net(images) outputs = self.bbox_util.decode_box(outputs) #---------------------------------------------------------# # 将预测框进行堆叠,然后进行非极大抑制 #---------------------------------------------------------# results = self.bbox_util.non_max_suppression(torch.cat(outputs, 1), self.num_classes, self.input_shape, image_shape, self.letterbox_image, conf_thres=self.confidence, nms_thres=self.nms_iou) t2 = time.time() tact_time = (t2 - t1) / test_interval return tact_time def detect_heatmap(self, image, heatmap_save_path): import cv2 import matplotlib.pyplot as plt def sigmoid(x): y = 1.0 / (1.0 + np.exp(-x)) return y #---------------------------------------------------------# # 在这里将图像转换成RGB图像,防止灰度图在预测时报错。 # 代码仅仅支持RGB图像的预测,所有其它类型的图像都会转化成RGB #---------------------------------------------------------# image = cvtColor(image) #---------------------------------------------------------# # 给图像增加灰条,实现不失真的resize # 也可以直接resize进行识别 #---------------------------------------------------------# image_data = resize_image(image, (self.input_shape[1],self.input_shape[0]), self.letterbox_image) #---------------------------------------------------------# # 添加上batch_size维度 #---------------------------------------------------------# image_data = np.expand_dims(np.transpose(preprocess_input(np.array(image_data, dtype='float32')), (2, 0, 1)), 0) with torch.no_grad(): images = torch.from_numpy(image_data) if self.cuda: images = images.cuda() #---------------------------------------------------------# # 将图像输入网络当中进行预测! #---------------------------------------------------------# outputs = self.net(images) plt.imshow(image, alpha=1) plt.axis('off') mask = np.zeros((image.size[1], image.size[0])) for sub_output in outputs: sub_output = sub_output.cpu().numpy() b, c, h, w = np.shape(sub_output) sub_output = np.transpose(np.reshape(sub_output, [b, 3, -1, h, w]), [0, 3, 4, 1, 2])[0] score = np.max(sigmoid(sub_output[..., 4]), -1) score = cv2.resize(score, (image.size[0], image.size[1])) normed_score = (score * 255).astype('uint8') mask = np.maximum(mask, normed_score) plt.imshow(mask, alpha=0.5, interpolation='nearest', cmap="jet") plt.axis('off') plt.subplots_adjust(top=1, bottom=0, right=1, left=0, hspace=0, wspace=0) plt.margins(0, 0) plt.savefig(heatmap_save_path, dpi=200, bbox_inches='tight', pad_inches = -0.1) print("Save to the " + heatmap_save_path) plt.show() def convert_to_onnx(self, simplify, model_path): import onnx self.generate(onnx=True) im = torch.zeros(1, 3, *self.input_shape).to('cpu') # image size(1, 3, 512, 512) BCHW input_layer_names = ["images"] output_layer_names = ["output"] # Export the model print(f'Starting export with onnx {onnx.__version__}.') torch.onnx.export(self.net, im, f = model_path, verbose = False, opset_version = 12, training = torch.onnx.TrainingMode.EVAL, do_constant_folding = True, input_names = input_layer_names, output_names = output_layer_names, dynamic_axes = None) # Checks model_onnx = onnx.load(model_path) # load onnx model onnx.checker.check_model(model_onnx) # check onnx model # Simplify onnx if simplify: import onnxsim print(f'Simplifying with onnx-simplifier {onnxsim.__version__}.') model_onnx, check = onnxsim.simplify( model_onnx, dynamic_input_shape=False, input_shapes=None) assert check, 'assert check failed' onnx.save(model_onnx, model_path) print('Onnx model save as {}'.format(model_path)) def get_map_txt(self, image_id, image, class_names, map_out_path): f = open(os.path.join(map_out_path, "detection-results/"+image_id+".txt"),"w") image_shape = np.array(np.shape(image)[0:2]) #---------------------------------------------------------# # 在这里将图像转换成RGB图像,防止灰度图在预测时报错。 # 代码仅仅支持RGB图像的预测,所有其它类型的图像都会转化成RGB #---------------------------------------------------------# image = cvtColor(image) #---------------------------------------------------------# # 给图像增加灰条,实现不失真的resize # 也可以直接resize进行识别 #---------------------------------------------------------# image_data = resize_image(image, (self.input_shape[1],self.input_shape[0]), self.letterbox_image) #---------------------------------------------------------# # 添加上batch_size维度 #---------------------------------------------------------# image_data = np.expand_dims(np.transpose(preprocess_input(np.array(image_data, dtype='float32')), (2, 0, 1)), 0) with torch.no_grad(): images = torch.from_numpy(image_data) if self.cuda: images = images.cuda() #---------------------------------------------------------# # 将图像输入网络当中进行预测! #---------------------------------------------------------# outputs = self.net(images) outputs = self.bbox_util.decode_box(outputs) #---------------------------------------------------------# # 将预测框进行堆叠,然后进行非极大抑制 #---------------------------------------------------------# results = self.bbox_util.non_max_suppression(torch.cat(outputs, 1), self.num_classes, self.input_shape, image_shape, self.letterbox_image, conf_thres = self.confidence, nms_thres = self.nms_iou) if results[0] is None: return top_label = np.array(results[0][:, 6], dtype = 'int32') top_conf = results[0][:, 4] * results[0][:, 5] top_boxes = results[0][:, :4] for i, c in list(enumerate(top_label)): predicted_class = self.class_names[int(c)] box = top_boxes[i] score = str(top_conf[i]) top, left, bottom, right = box if predicted_class not in class_names: continue f.write("%s %s %s %s %s %s\n" % (predicted_class, score[:6], str(int(left)), str(int(top)), str(int(right)),str(int(bottom)))) f.close() return