Beispiel #1
0
    def __init__(self, model_conf: ModelConfig, mode: RunMode, outputs):
        self.model_conf = model_conf
        self.utils = NetworkUtils(mode)

        self.max_label_num = self.model_conf.max_label_num
        if self.max_label_num == -1:
            exception(
                text=
                "The scene must set the maximum number of label (MaxLabelNum)",
                code=-998)
        self.category_num = self.model_conf.category_num

        flatten = tf.keras.layers.Flatten()(outputs)
        shape_list = flatten.get_shape().as_list()

        # print(shape_list[1], self.max_label_num)
        outputs = tf.keras.layers.Reshape(
            [self.max_label_num,
             int(shape_list[1] / self.max_label_num)])(flatten)
        self.outputs = tf.keras.layers.Dense(
            input_shape=outputs.shape,
            units=self.category_num,
        )(inputs=outputs)

        print("output to reshape ----------- ", self.outputs.shape)
        self.outputs = tf.keras.layers.Reshape(
            [self.max_label_num, self.category_num])(self.outputs)
Beispiel #2
0
    def __init__(self, model_conf: ModelConfig, mode: RunMode,
                 backbone: CNNNetwork, recurrent: RecurrentNetwork):
        """

        :param model_conf: 模型配置
        :param mode: 运行模式 (Trains/Validation/Predict)
        :param backbone:
        :param recurrent:
        """
        self.model_conf = model_conf
        self.decoder = Decoder(self.model_conf)
        self.mode = mode
        self.network = backbone
        self.recurrent = recurrent
        self.inputs = tf.keras.Input(dtype=tf.float32,
                                     shape=self.input_shape,
                                     name='input')
        self.labels = tf.keras.Input(dtype=tf.int32,
                                     shape=[None],
                                     sparse=True,
                                     name='labels')
        self.utils = NetworkUtils(mode)
        self.merged_summary = None
        self.optimizer = None
        self.dataset_size = None
Beispiel #3
0
    def __init__(self, model_conf: ModelConfig, mode: RunMode, cnn: CNNNetwork,
                 recurrent: RecurrentNetwork):
        """

        :param model_conf: 模型配置
        :param mode: 运行模式 (Trains/Validation/Predict), 其实[Validation]是没有真正被使用的,验证集使用的是[Trains]模式
        对于静态图可以定义一个占位符[is_training]通过Feed值来实现这种控制, 但是预测
        :param cnn:
        :param recurrent:
        """
        self.model_conf = model_conf
        self.decoder = Decoder(self.model_conf)
        self.mode = mode
        self.network = cnn
        self.recurrent = recurrent
        self.inputs = tf.keras.Input(dtype=tf.float32,
                                     shape=self.input_shape,
                                     name='input')
        self.labels = tf.keras.Input(dtype=tf.int32,
                                     shape=[None],
                                     sparse=True,
                                     name='labels')
        self.utils = NetworkUtils(mode)
        self.merged_summary = None
        self.optimizer = None
 def __init__(self, mode, cnn: CNNNetwork, recurrent: RecurrentNetwork):
     self.mode = mode
     self.utils = NetworkUtils(mode)
     self.network = cnn
     self.recurrent = recurrent
     self.inputs = tf.placeholder(tf.float32, [None, None, RESIZE[1], IMAGE_CHANNEL], name='input')
     self.labels = tf.sparse_placeholder(tf.int32, name='labels')
     self.seq_len = None
     self.merged_summary = None
Beispiel #5
0
 def __init__(self, model_conf: ModelConfig, mode: RunMode, cnn: CNNNetwork, recurrent: RecurrentNetwork):
     self.model_conf = model_conf
     self.mode = mode
     self.decoder = Decoder(self.model_conf)
     self.utils = NetworkUtils(mode)
     self.network = cnn
     self.recurrent = recurrent
     self.inputs = tf.keras.Input(dtype=tf.float32, shape=self.input_shape, name='input')
     self.labels = tf.keras.Input(dtype=tf.int32, shape=[None], sparse=True, name='labels')
     self.merged_summary = None
Beispiel #6
0
    def __init__(self, model_conf: ModelConfig, mode: RunMode, outputs):
        self.model_conf = model_conf
        self.utils = NetworkUtils(mode)

        self.dense = tf.keras.layers.Dense(
            units=self.model_conf.category_num + 2,
            kernel_initializer=tf.keras.initializers.he_normal(seed=None),
            bias_initializer='zeros',
        )

        self.outputs = self.dense(outputs)
        self.predict = tf.keras.backend.permute_dimensions(self.outputs, pattern=(1, 0, 2))
Beispiel #7
0
    def __init__(self, model_conf: ModelConfig, mode: RunMode, outputs):
        self.model_conf = model_conf
        self.utils = NetworkUtils(mode)

        self.dense = tf.keras.layers.Dense(
            units=self.model_conf.category_num + 2,
            kernel_initializer=tf.keras.initializers.he_normal(seed=None),
            kernel_regularizer=l1_l2(l1=0.01, l2=0.001),
            bias_initializer='zeros',
        )

        self.time_distributed = lambda: tf.keras.layers.TimeDistributed(
            layer=self.dense,
            name='predict',
        )(inputs=outputs, training=self.utils.training)

        self.outputs = self.time_distributed()
        self.predict = tf.keras.backend.permute_dimensions(self.outputs,
                                                           pattern=(1, 0, 2))