def __init__(self, device): self.dtype = torch.FloatTensor if device == 'cpu' else torch.cuda.FloatTensor VGG_FACE = vgg_face(pretrained=True) self.VGG_FACE_AC = VGG_Activations(VGG_FACE, [1, 6, 11, 18, 25]).type(self.dtype) VGG19 = vgg19(pretrained=True) self.VGG19_AC = VGG_Activations(VGG19, [1, 6, 11, 20, 29]).type(self.dtype)
def __init__(self, feed_forward=True): super(LossEG, self).__init__() self.VGG_FACE_AC = VGG_Activations(vgg_face(pretrained=True), [1, 6, 11, 18, 25]) self.VGG19_AC = VGG_Activations(vgg19(pretrained=True), [1, 6, 11, 20, 29]) self.match_loss = not feed_forward
def __init__(self, device, feed_forward=True): super(LossEG, self).__init__() self.dtype = torch.FloatTensor if device == 'cpu' else torch.cuda.FloatTensor self.VGG_FACE_AC = VGG_Activations(vgg_face(pretrained=True), [1, 6, 11, 18, 25]).type(self.dtype) self.VGG19_AC = VGG_Activations(vgg19(pretrained=True), [1, 6, 11, 20, 29]).type(self.dtype) self.match_loss = not feed_forward
def __init__(self, feed_forward=True): super(LossEG, self).__init__() self.VGG_FACE_AC = VGG_Activations(vgg_face(pretrained=True), [1, 6, 11, 18, 25]) self.VGG19_AC = VGG_Activations(vgg19(pretrained=True), [1, 6, 11, 20, 29]) self.IMG_NET_MEAN = torch.Tensor([0.485, 0.456, 0.406]).reshape([1, 3, 1, 1]) self.IMG_NET_STD = torch.Tensor([0.229, 0.224, 0.225]).reshape([1, 3, 1, 1]) self.match_loss = not feed_forward
def __init__(self, feed_forward=True, gpu=None): super(vgg_feature, self).__init__() self.VGG_FACE_AC = VGG_Activations_2(vgg_face(pretrained=True), [1, 6, 11, 18, 25]) # self.match_loss = not feed_forward self.gpu = gpu if gpu is not None: self.cuda(gpu)