def __init__(self, num_states, num_actions, args): self.args = args self.num_states = num_states self.num_actions = num_actions #Set 2 DNNs self.main_network = network.NAF_Network(self.num_states, self.num_actions, self.args.hidden_layer_size) self.target_network = network.NAF_Network(self.num_states, self.num_actions, self.args.hidden_layer_size) # initialize parameter vector filename = 'weight_4.pth' param = torch.load(filename, map_location='cpu') self.main_network.load_state_dict(param) #Output information about Actor network and Critic network print(self.main_network) self.target_network.load_state_dict(self.main_network.state_dict()) #Set Optimizer self.optimizer = optim.Adam(self.main_network.parameters(), lr=self.args.lr) self.loss_func = nn.MSELoss()
def __init__(self, num_states, num_actions, args): self.args = args self.num_states = num_states self.num_actions = num_actions #Set 4 DNNs self.network_1 = network.NAF_Network(self.num_states,self.num_actions,self.args.hidden_layer_size) self.network_2 = network.NAF_Network(self.num_states,self.num_actions,self.args.hidden_layer_size) self.network_3 = network.NAF_Network(self.num_states,self.num_actions,self.args.hidden_layer_size) self.network_4 = network.NAF_Network(self.num_states,self.num_actions,self.args.hidden_layer_size) #case1 filename_1 ='weight_1.pth' filename_2 ='weight_2.pth' filename_3 ='weight_3.pth' filename_4 ='weight_4.pth' #case2 #filename_1 ='weight_5.pth' #filename_2 ='weight_6.pth' #filename_3 ='weight_7.pth' #filename_4 ='weight_8.pth' #case3 #filename_1 ='weight_1.pth' #filename_2 ='weight_6.pth' #filename_3 ='weight_7.pth' #filename_4 ='weight_8.pth' #case4 #filename_1 ='weight_5.pth' #filename_2 ='weight_2.pth' #filename_3 ='weight_7.pth' #filename_4 ='weight_8.pth' #case5 #filename_1 ='weight_1.pth' #filename_2 ='weight_2.pth' #filename_3 ='weight_7.pth' #filename_4 ='weight_8.pth' param_1 = torch.load(filename_1, map_location='cpu') param_2 = torch.load(filename_2, map_location='cpu') param_3 = torch.load(filename_3, map_location='cpu') param_4 = torch.load(filename_4, map_location='cpu') self.network_1.load_state_dict(param_1) self.network_2.load_state_dict(param_2) self.network_3.load_state_dict(param_3) self.network_4.load_state_dict(param_4)
def __init__(self, num_states, num_actions, args): self.args = args self.num_states = num_states self.num_actions = num_actions self.network_1 = network.NAF_Network(self.num_states, self.num_actions, self.args.hidden_layer_size) self.network_2 = network.NAF_Network(self.num_states, self.num_actions, self.args.hidden_layer_size) filename_1 = 'weight_1.pth' filename_2 = 'weight_2.pth' param_1 = torch.load(filename_1, map_location='cpu') param_2 = torch.load(filename_2, map_location='cpu') self.network_1.load_state_dict(param_1) self.network_2.load_state_dict(param_2)
def __init__(self, num_states, num_actions, args): self.args = args self.num_states = num_states self.num_actions = num_actions self.main_network = network.NAF_Network(self.num_states, self.num_actions, self.args.hidden_layer_size) filename = 'weight_1.pth' param = torch.load(filename, map_location='cpu') self.main_network.load_state_dict(param)
def __init__(self, num_states, num_actions, args): self.args = args self.num_states = num_states self.num_actions = num_actions self.network_1 = network.NAF_Network(self.num_states, self.num_actions, self.args.hidden_layer_size) self.network_2 = network.NAF_Network(self.num_states, self.num_actions, self.args.hidden_layer_size) self.network_3 = network.NAF_Network(self.num_states, self.num_actions, self.args.hidden_layer_size) self.network_4 = network.NAF_Network(self.num_states, self.num_actions, self.args.hidden_layer_size) self.network_5 = network.NAF_Network(self.num_states, self.num_actions, self.args.hidden_layer_size) self.network_6 = network.NAF_Network(self.num_states, self.num_actions, self.args.hidden_layer_size) self.network_7 = network.NAF_Network(self.num_states, self.num_actions, self.args.hidden_layer_size) self.network_8 = network.NAF_Network(self.num_states, self.num_actions, self.args.hidden_layer_size) filename_1 = 'weight_1.pth' filename_2 = 'weight_2.pth' filename_3 = 'weight_3.pth' filename_4 = 'weight_4.pth' filename_5 = 'weight_5.pth' filename_6 = 'weight_6.pth' filename_7 = 'weight_7.pth' filename_8 = 'weight_8.pth' param_1 = torch.load(filename_1, map_location='cpu') param_2 = torch.load(filename_2, map_location='cpu') param_3 = torch.load(filename_3, map_location='cpu') param_4 = torch.load(filename_4, map_location='cpu') param_5 = torch.load(filename_5, map_location='cpu') param_6 = torch.load(filename_6, map_location='cpu') param_7 = torch.load(filename_7, map_location='cpu') param_8 = torch.load(filename_8, map_location='cpu') self.network_1.load_state_dict(param_1) self.network_2.load_state_dict(param_2) self.network_3.load_state_dict(param_3) self.network_4.load_state_dict(param_4) self.network_5.load_state_dict(param_5) self.network_6.load_state_dict(param_6) self.network_7.load_state_dict(param_7) self.network_8.load_state_dict(param_8)
def __init__(self, num_states, num_actions, args): self.args = args self.num_states = num_states self.num_actions = num_actions #Set 2 DNNs self.main_network = network.NAF_Network(self.num_states, self.num_actions, self.args.hidden_layer_size) self.target_network = network.NAF_Network(self.num_states, self.num_actions, self.args.hidden_layer_size) #Output information about Actor network and Critic network print(self.main_network) self.target_network.load_state_dict(self.main_network.state_dict()) #Set Optimizer self.optimizer = optim.Adam(self.main_network.parameters(), lr=self.args.lr) self.loss_func = nn.MSELoss()