Beispiel #1
0
def main():
    # src_rec_dir = src_dir + '/rec'
    src_rec_dir = src_dir + '/rec_ajusted'
    src_frame_dir = src_dir + '/frame'
    src_gt_dir = src_dir + '/gt'
    src_shading_dir = src_dir + '/shading'

    if is_input_depth:
        if is_input_frame:
            ch_num = 3
        else:
            ch_num = 2
    else:
        if is_input_frame:
            ch_num = 2
        else:
            ch_num = 1

    # model configuration
    if net_type is '0':
        model = network.build_unet_model(batch_shape, ch_num)
    elif net_type is '1':
        model = network.build_resnet_model(batch_shape, ch_num)
    elif net_type is '2':
        model = network.build_dense_resnet_model(batch_shape, ch_num)
    
    # log
    df_log = pd.read_csv(out_dir + '/training.log')
    if is_select_val:
        df = df_log['val_loss']
    else:
        df = df_log['loss']
    
    df.index = df.index + 1
    # select minimum loss model
    is_select_min_loss_model = True
    if is_select_min_loss_model:
        df_select = df[df.index>epoch_num-select_range]
        df_select = df_select[df_select.index<=epoch_num]
        df_select = df_select[df_select.index%save_period==0]
        min_loss = df_select.min()
        idx_min_loss = df_select.idxmin()
        # model.load_weights(out_dir + '/model/model-%03d.hdf5'%idx_min_loss)
        model.load_weights(out_dir + '/model/model-best.hdf5')
    else:
        model.load_weights(out_dir + '/model-final.hdf5')
    
    # loss graph
    lossgraph_dir = predict_dir + '/loss_graph'
    os.makedirs(lossgraph_dir, exist_ok=True)
    arr_loss = df.values
    arr_epoch = df.index
    if is_select_val:
        init_epochs = [0, 10, int(epoch_num / 2), epoch_num - 200]
    else:
        init_epochs = [0, 10, epoch_num - 200, epoch_num - 100]

    for init_epo in init_epochs:
        if init_epo < 0:
            continue
        if init_epo >= epoch_num:
            continue
        plt.figure()
        plt.plot(arr_epoch[init_epo: epoch_num], arr_loss[init_epo: epoch_num])
        if is_select_min_loss_model:
            plt.plot(idx_min_loss, min_loss, 'ro')
        plt.xlabel('epoch')
        plt.ylabel('loss')
        plt.title('{} : epoch {} - {}'.format(df.name, init_epo + 1, epoch_num))
        plt.savefig(lossgraph_dir + '/loss_{}-{}.pdf'.format(init_epo + 1, epoch_num))

    # error compare txt
    err_strings = 'index,type,MAE depth,MAE predict,RMSE depth,RMSE predict\n'

    os.makedirs(predict_dir, exist_ok=True)
    for test_idx in tqdm(data_idx_range):
        src_bgra = src_frame_dir + '/frame{:03d}.png'.format(test_idx)
        # src_depth_gap = src_rec_dir + '/depth{:03d}.png'.format(test_idx)
        src_depth_gap = src_rec_dir + '/depth{:03d}.bmp'.format(test_idx)
        src_depth_gt = src_gt_dir + '/gt{:03d}.bmp'.format(test_idx)
        # src_shading = src_shading_dir + '/shading{:03d}.png'.format(test_idx)
        src_shading = src_shading_dir + '/shading{:03d}.bmp'.format(test_idx)

        # read images
        bgr = cv2.imread(src_bgra, -1) / 255.
        depth_img_gap = cv2.imread(src_depth_gap, -1)
        # depth_gap = depth_tools.unpack_png_to_float(depth_img_gap)
        depth_gap = depth_tools.unpack_bmp_bgra_to_float(depth_img_gap)

        depth_img_gt = cv2.imread(src_depth_gt, -1)
        depth_gt = depth_tools.unpack_bmp_bgra_to_float(depth_img_gt)
        depth_gt = depth_gt[:, :1200]  # clipping

        shading_bgr = cv2.imread(src_shading, -1)
        # shading = cv2.imread(src_shading, 0) # GrayScale
        shading = np.zeros_like(shading_bgr)
        shading[:, :, 0] = 0.299 * shading_bgr[:, :, 2] + 0.587 * shading_bgr[:, :, 1] + 0.114 * shading_bgr[:, :, 0]

        if is_shading_norm:
            shading = shading / np.max(shading)
        else:
            shading = shading / 255.

        img_shape = bgr.shape[:2]

        # normalization (may not be needed)
        # norm_factor = depth_gap.max()
        # depth_gap /= norm_factor
        # depth_gt /= depth_gt.max()

        depth_thre = depth_threshold

        # merge bgr + depth_gap
        if is_input_frame:
            bgrd = np.dstack([shading[:, :, 0], depth_gap, bgr[:, :, 0]])
        else:
            bgrd = np.dstack([shading[:, :, 0], depth_gap])

        # clip batches
        b_top, b_left = batch_tl
        b_h, b_w = batch_shape
        top_coords = range(batch_tl[0], img_shape[0], batch_shape[0])
        left_coords = range(batch_tl[1], img_shape[1], batch_shape[1])

        # add training data
        x_test = []
        for top, left in product(top_coords, left_coords):

            def clip_batch(img, top_left, size):
                t, l, h, w = *top_left, *size
                return img[t:t + h, l:l + w]

            batch_test = clip_batch(bgrd, (top, left), batch_shape)
            
            if is_input_depth or is_input_frame:
                x_test.append(batch_test)
            else:
                x_test.append(batch_test[:, :, 0].reshape((*batch_shape, 1)))

        # predict
        x_test = np.array(x_test)[:]
        predict = model.predict(x_test, batch_size=1)  # w/o denormalization
        # predict = model.predict(
        #     x_test, batch_size=1) * norm_factor  # w/ denormalization
        # decode_img = np.hstack([
        #     np.vstack([predict[0], predict[2]]),
        #     np.vstack([predict[1], predict[3]])
        # ])[:, :, 0:2]
        decode_img = predict[0][:, :, 0:2]

        # training types
        is_gt_available = depth_gt > depth_thre
        is_gap_unavailable = depth_gap < depth_thre

        is_depth_close = np.logical_and(
            np.abs(depth_gap - depth_gt) < difference_threshold,
            is_gt_available)

        is_to_interpolate = np.logical_and(is_gt_available, is_gap_unavailable)
        train_segment = np.zeros(decode_img.shape[:2])
        train_segment[is_depth_close] = 1
        train_segment[is_to_interpolate] = 2

        # is_train_area = np.logical_or(is_depth_close, is_to_interpolate)

        # mask = is_gt_available * 1.0 # GT
        mask = is_depth_close * 1.0 # no-complement
        # mask = is_train_area * 1.0 # complement

        mask_gt = is_gt_available * 1.0

        # cv2.imwrite(predict_dir + '/mask-{:05d}.png'.format(test_idx),
        #             (mask * 255).astype(np.uint8))

        predict_depth = decode_img[:, :, 0].copy()

        depth_gt_masked = depth_gt * mask
        depth_gt_zero = (depth_gt - depth_gap) * mask
        predict_masked = predict_depth * mask

        # scale
        predict_depth /= difference_scaling
        predict_masked /= difference_scaling

        # predict normalization
        if is_predict_norm:
            mean_gt = np.mean(depth_gt_zero)
            mean_predict = np.mean(predict_masked)
            depth_gt_zero -= mean_gt
            predict_depth -= mean_predict
            predict_masked -= mean_predict
            sd_gt = np.sqrt(np.var(depth_gt_zero))
            sd_predict = np.sqrt(np.var(predict_masked))
            predict_depth *= sd_gt / sd_predict
            predict_masked *= sd_gt / sd_predict
            depth_gt = (depth_gt_zero + depth_gap) * mask

        # difference learn
        predict_depth += depth_gap
        predict_masked += depth_gap * mask

        # predict_depth = common_tools.gaussian_filter(predict_depth, 4)
        # predict_masked = predict_depth * mask

        # error
        depth_err_abs = np.abs(depth_gt - depth_gap)
        predict_err_abs = np.abs(depth_gt - predict_depth)
        depth_err_sqr = np.square(depth_gt - depth_gap)
        predict_err_sqr = np.square(depth_gt - predict_depth)
        # error image
        depth_err = depth_err_abs
        predict_err = predict_err_abs
        predict_err_masked = predict_err * mask

        mask_length = np.sum(mask)

        # Mean Absolute Error
        predict_MAE = np.sum(predict_err_abs * mask) / mask_length
        depth_MAE = np.sum(depth_err_abs * mask) / mask_length

        # Mean Squared Error
        predict_MSE = np.sum(predict_err_sqr * mask) / mask_length
        depth_MSE = np.sum(depth_err_sqr * mask) / mask_length

        # Root Mean Square Error
        predict_RMSE = np.sqrt(predict_MSE)
        depth_RMSE = np.sqrt(depth_MSE)

        err_strings += str(test_idx)
        if test_idx in test_range:
        # if test_idx not in train_range:
            err_strings += ',test,'
        else:
            err_strings += ',train,'
        for string in [depth_MAE, predict_MAE,depth_RMSE, predict_RMSE]:
            err_strings += str(string) + ','
        err_strings.rstrip(',')
        err_strings = err_strings[:-1] + '\n'

        predict_loss = predict_MAE
        depth_loss = depth_MAE

        # save predicted depth
        if test_idx in save_ply_range:
            predict_bmp = depth_tools.pack_float_to_bmp_bgra(predict_depth)
            cv2.imwrite(predict_dir + '/predict_depth-{:03d}.bmp'.format(test_idx),
                        predict_bmp)

        # save ply
        if is_save_ply:
            if test_idx in save_ply_range:
                if is_masked_ply:
                    xyz_predict_masked = depth_tools.convert_depth_to_coords(predict_masked, cam_params)
                    depth_tools.dump_ply(predict_dir + '/predict_masked-%03d.ply'%test_idx, xyz_predict_masked.reshape(-1, 3).tolist())
                else:
                    xyz_predict = depth_tools.convert_depth_to_coords(predict_depth, cam_params)
                    depth_tools.dump_ply(predict_dir + '/predict-%03d.ply'%test_idx, xyz_predict.reshape(-1, 3).tolist())
                
        # save fig
        if test_idx in test_range:
        # if test_idx not in train_range:
            # layout
            fig = plt.figure(figsize=(8, 6))
            gs_master = GridSpec(nrows=3,
                                ncols=2,
                                height_ratios=[1, 1, 1],
                                width_ratios=[4, 0.1])
            gs_1 = GridSpecFromSubplotSpec(nrows=1,
                                        ncols=4,
                                        subplot_spec=gs_master[0, 0],
                                        wspace=0.05,
                                        hspace=0)
            gs_2 = GridSpecFromSubplotSpec(nrows=1,
                                        ncols=4,
                                        subplot_spec=gs_master[1, 0],
                                        wspace=0.05,
                                        hspace=0)

            gs_3 = GridSpecFromSubplotSpec(nrows=1,
                                        ncols=4,
                                        subplot_spec=gs_master[2, 0],
                                        wspace=0.05,
                                        hspace=0)

            gs_4 = GridSpecFromSubplotSpec(nrows=3,
                                        ncols=1,
                                        subplot_spec=gs_master[0:2, 1])

            ax_reg0 = fig.add_subplot(gs_1[0, 0])
            ax_reg1 = fig.add_subplot(gs_1[0, 1])
            ax_reg2 = fig.add_subplot(gs_1[0, 2])
            ax_reg3 = fig.add_subplot(gs_1[0, 3])

            ax_enh0 = fig.add_subplot(gs_2[0, 0])
            ax_enh1 = fig.add_subplot(gs_2[0, 1])
            ax_enh2 = fig.add_subplot(gs_2[0, 2])
            ax_enh3 = fig.add_subplot(gs_2[0, 3])

            ax_misc0 = fig.add_subplot(gs_3[0, 0])

            ax_cb0 = fig.add_subplot(gs_4[0, 0])
            ax_cb1 = fig.add_subplot(gs_4[1, 0])

            # rmse
            ax_err_gap = fig.add_subplot(gs_3[0, 1])
            ax_err = fig.add_subplot(gs_3[0, 2])
            ax_err_masked = fig.add_subplot(gs_3[0, 3])
            ax_cb2 = fig.add_subplot(gs_4[2, 0])

            for ax in [
                    ax_reg0, ax_reg1, ax_reg2, ax_reg3, ax_enh0, ax_enh1, ax_enh2,
                    ax_enh3, ax_misc0, ax_err_gap, ax_err, ax_err_masked
            ]:
                ax.axis('off')

            ax_reg0.imshow(depth_gt, vmin=vmin, vmax=vmax)
            ax_reg1.imshow(depth_gap, vmin=vmin, vmax=vmax)
            ax_reg2.imshow(predict_depth, vmin=vmin, vmax=vmax)
            ax_reg3.imshow(predict_masked, vmin=vmin, vmax=vmax)

            # close up
            # mean = np.median(depth_gt)
            mean = np.sum(depth_gt_masked) / mask_length
            # vmin_s, vmax_s = mean - 0.05, mean + 0.05
            vmin_s, vmax_s = mean - vm_range, mean + vm_range

            ax_enh0.imshow(depth_gt, cmap='jet', vmin=vmin_s, vmax=vmax_s)
            ax_enh1.imshow(depth_gap, cmap='jet', vmin=vmin_s, vmax=vmax_s)
            ax_enh2.imshow(predict_depth, cmap='jet', vmin=vmin_s, vmax=vmax_s)
            ax_enh3.imshow(predict_masked, cmap='jet', vmin=vmin_s, vmax=vmax_s)

            # misc
            ax_misc0.imshow(shading_bgr[:, :, ::-1])
            # ax_misc0.imshow(shading[:, :, ::-1])
            # ax_misc1.imshow(train_segment, cmap='rainbow', vmin=0, vmax=2)

            # error
            # vmin_e, vmax_e = 0, 0.05
            # vmin_e, vmax_e = 0, 0.02
            # vmin_e, vmax_e = 0, 0.01
            vmin_e, vmax_e = 0, vm_e_range
            ax_err_gap.imshow(depth_err, cmap='jet', vmin=vmin_e, vmax=vmax_e)
            ax_err.imshow(predict_err, cmap='jet', vmin=vmin_e, vmax=vmax_e)
            ax_err_masked.imshow(predict_err_masked, cmap='jet', vmin=vmin_e, vmax=vmax_e)

            # title
            ax_reg0.set_title('GT')
            ax_reg1.set_title('Depth')
            ax_reg2.set_title('Predict')
            ax_reg3.set_title('Masked predict')

            if test_idx in test_range:
            # if test_idx not in train_range:
                ax_enh0.set_title('Test data')
            else:
                ax_enh0.set_title('Train data')
            ax_enh1.set_title('Train epoch:{}'.format(epoch_num))
            ax_enh2.set_title('Model epoch:{}'.format(idx_min_loss))
            ax_enh3.set_title('Train loss:{:.6f}'.format(min_loss))

            ax_err_gap.set_title('Depth error:{:.6f}'.format(depth_loss))
            ax_err_masked.set_title('Predict error:{:.6f}'.format(predict_loss))

            # colorbar
            plt.tight_layout()
            fig.savefig(io.BytesIO())
            cb_offset = -0.05

            plt.colorbar(ScalarMappable(colors.Normalize(vmin=vmin, vmax=vmax)),
                        cax=ax_cb0)
            im_pos, cb_pos = ax_reg3.get_position(), ax_cb0.get_position()
            ax_cb0.set_position([
                cb_pos.x0 + cb_offset, im_pos.y0, cb_pos.x1 - cb_pos.x0,
                im_pos.y1 - im_pos.y0
            ])

            plt.colorbar(ScalarMappable(colors.Normalize(vmin=vmin_s, vmax=vmax_s),
                                        cmap='jet'),
                        cax=ax_cb1)
            im_pos, cb_pos = ax_enh3.get_position(), ax_cb1.get_position()
            ax_cb1.set_position([
                cb_pos.x0 + cb_offset, im_pos.y0, cb_pos.x1 - cb_pos.x0,
                im_pos.y1 - im_pos.y0
            ])

            plt.colorbar(ScalarMappable(colors.Normalize(vmin=vmin_e, vmax=vmax_e),
                                        cmap='jet'),
                        cax=ax_cb2)
            im_pos, cb_pos = ax_err.get_position(), ax_cb2.get_position()
            ax_cb2.set_position([
                cb_pos.x0 + cb_offset, im_pos.y0, cb_pos.x1 - cb_pos.x0,
                im_pos.y1 - im_pos.y0
            ])

            plt.savefig(predict_dir + '/compare-{:03d}.png'.format(test_idx), dpi=300)
            plt.close()

    with open(predict_dir + '/error_compare.txt', mode='w') as f:
        f.write(err_strings)

    compare_error.compare_error(predict_dir + '/')
Beispiel #2
0
def main():
    if data_type is '0':
        src_rec_dir = src_dir + '/rec'
        src_frame_dir = src_dir + '/frame'
        src_gt_dir = src_dir + '/gt'
        src_shading_dir = src_dir + '/shading'
    elif data_type is '1':
        src_frame_dir = src_dir + '/proj'
        src_gt_dir = src_dir + '/gt'
        src_shading_dir = src_dir + '/shade'
        src_rec_dir = src_dir + '/rec'
    elif data_type is '2':
        src_frame_dir = src_dir + '/proj'
        src_gt_dir = src_dir + '/gt'
        src_shading_dir = src_dir + '/shade'
        src_rec_dir = src_dir + '/rec'
    elif data_type is '3':
        src_frame_dir = src_dir + '/proj'
        src_gt_dir = src_dir + '/gt'
        src_shading_dir = src_dir + '/shade'
        src_rec_dir = src_dir + '/rec'

    if is_input_depth:
        if is_input_frame:
            ch_num = 3
            if is_input_coord:
                ch_num = 5
        else:
            ch_num = 2
    else:
        if is_input_frame:
            ch_num = 2
        else:
            ch_num = 1

    # model configuration
    model = network.build_unet_model(batch_shape, ch_num)

    # log
    df_log = pd.read_csv(out_dir + '/training.log')
    if is_select_val:
        df = df_log['val_loss']
    else:
        df = df_log['loss']

    df.index = df.index + 1
    if is_select_min_loss_model:
        df_select = df[df.index > epoch_num - select_range]
        df_select = df_select[df_select.index <= epoch_num]
        df_select = df_select[df_select.index % save_period == 0]
        min_loss = df_select.min()
        idx_min_loss = df_select.idxmin()
        model.load_weights(out_dir + '/model/model-%03d.hdf5' % idx_min_loss)
        # model.load_weights(out_dir + '/model/model-best.hdf5')
    else:
        # model.load_weights(out_dir + '/model-final.hdf5')
        model.load_weights(out_dir + '/model/model-%03d.hdf5' % epoch_num)

    # loss graph
    lossgraph_dir = predict_dir + '/loss_graph'
    os.makedirs(lossgraph_dir, exist_ok=True)
    arr_loss = df.values
    arr_epoch = df.index
    if is_select_val:
        init_epochs = [0, 10, int(epoch_num / 2), epoch_num - 200]
    else:
        init_epochs = [0, 10, epoch_num - 200, epoch_num - 100]

    for init_epo in init_epochs:
        if init_epo < 0:
            continue
        if init_epo >= epoch_num:
            continue
        plt.figure()
        plt.plot(arr_epoch[init_epo:epoch_num], arr_loss[init_epo:epoch_num])
        if is_select_min_loss_model:
            plt.plot(idx_min_loss, min_loss, 'ro')
        plt.xlabel('epoch')
        plt.ylabel('loss')
        plt.title('{} : epoch {} - {}'.format(df.name, init_epo + 1,
                                              epoch_num))
        plt.savefig(lossgraph_dir +
                    '/loss_{}-{}.pdf'.format(init_epo + 1, epoch_num))

    # error compare txt
    err_strings = 'index,type,MAE depth,MAE predict,RMSE depth,RMSE predict,SD AE depth,SD AE predict,SD RSE depth,SD RSE predict\n'

    os.makedirs(predict_dir, exist_ok=True)
    for test_idx in tqdm(data_idx_range):
        if data_type is '0':
            src_bgra = src_frame_dir + '/frame{:03d}.png'.format(test_idx)
            src_depth_gap = src_rec_dir + '/depth{:03d}.bmp'.format(test_idx)
            src_depth_gt = src_gt_dir + '/gt{:03d}.bmp'.format(test_idx)
            src_shading = src_shading_dir + '/shading{:03d}.bmp'.format(
                test_idx)
        elif data_type is '1':
            src_bgra = src_frame_dir + '/{:05d}.png'.format(test_idx)
            src_depth_gt = src_gt_dir + '/{:05d}.bmp'.format(test_idx)
            src_shading = src_shading_dir + '/{:05d}.png'.format(test_idx)
            src_depth_gap = src_rec_dir + '/{:05d}.bmp'.format(test_idx)
        elif data_type is '2':
            src_bgra = src_frame_dir + '/{:05d}.png'.format(test_idx)
            src_depth_gt = src_gt_dir + '/{:05d}.bmp'.format(test_idx)
            src_shading = src_shading_dir + '/{:05d}.png'.format(test_idx)
            src_depth_gap = src_rec_dir + '/{:05d}.bmp'.format(test_idx)
        elif data_type is '3':
            src_bgra = src_frame_dir + '/{:05d}.png'.format(test_idx)
            src_depth_gt = src_gt_dir + '/{:05d}.bmp'.format(test_idx)
            src_shading = src_shading_dir + '/{:05d}.png'.format(test_idx)
            src_depth_gap = src_rec_dir + '/{:05d}.bmp'.format(test_idx)

        # read images
        bgr = cv2.imread(src_bgra, -1) / 255.
        bgr = bgr[:1200, :1200, :]
        depth_img_gap = cv2.imread(src_depth_gap, -1)
        depth_img_gap = depth_img_gap[:1200, :1200, :]
        depth_gap = depth_tools.unpack_bmp_bgra_to_float(depth_img_gap)

        depth_img_gt = cv2.imread(src_depth_gt, -1)
        depth_img_gt = depth_img_gt[:1200, :1200, :]
        depth_gt = depth_tools.unpack_bmp_bgra_to_float(depth_img_gt)
        img_shape = bgr.shape[:2]

        shading_bgr = cv2.imread(src_shading, 1)
        shading_bgr = shading_bgr[:1200, :1200, :]
        shading_gray = cv2.imread(src_shading, 0)  # GrayScale
        shading_gray = shading_gray[:1200, :1200]
        shading = shading_gray

        is_shading_available = shading > 0
        mask_shading = is_shading_available * 1.0
        depth_gap *= mask_shading

        if is_shading_norm:  # shading norm : mean 0, var 1
            is_shading_available = shading > 8.0
            mask_shading = is_shading_available * 1.0
            mean_shading = np.sum(
                shading * mask_shading) / np.sum(mask_shading)
            var_shading = np.sum(
                np.square((shading - mean_shading) *
                          mask_shading)) / np.sum(mask_shading)
            std_shading = np.sqrt(var_shading)
            shading = (shading - mean_shading) / std_shading
        else:
            shading = shading / 255.

        depth_thre = depth_threshold

        if is_input_coord:
            coord_x = np.linspace(0, 1, img_size)
            coord_y = np.linspace(0, 1, img_size)
            grid_x, grid_y = np.meshgrid(coord_x, coord_y)

        # merge bgr + depth_gap
        if is_input_frame:
            if is_input_depth:
                bgrd = np.dstack([shading[:, :], depth_gap, bgr[:, :, 0]])
                if is_input_coord:
                    bgrd = np.dstack([
                        shading[:, :], depth_gap, bgr[:, :, 0], grid_x, grid_y
                    ])
            else:
                bgrd = np.dstack([shading[:, :], bgr[:, :, 0]])
        else:
            bgrd = np.dstack([shading[:, :], depth_gap])

        # clip batches
        b_top, b_left = batch_tl
        b_h, b_w = batch_shape
        top_coords = range(b_top, img_shape[0], b_h)
        left_coords = range(b_left, img_shape[1], b_w)

        # add test data
        x_test = []
        for top, left in product(top_coords, left_coords):

            def clip_batch(img, top_left, size):
                t, l, h, w = *top_left, *size
                return img[t:t + h, l:l + w]

            batch_test = clip_batch(bgrd, (top, left), batch_shape)

            if is_input_depth or is_input_frame:
                x_test.append(batch_test)
            else:
                x_test.append(batch_test[:, :, 0].reshape((*batch_shape, 1)))

        # predict
        x_test = np.array(x_test)[:]
        predict = model.predict(x_test, batch_size=1)  # w/o denormalization
        decode_img = predict[0][:, :, 0:2]

        # training types
        is_gt_available = depth_gt > depth_thre
        is_gap_unavailable = depth_gap < depth_thre

        is_depth_close = np.logical_and(
            np.abs(depth_gap - depth_gt) < difference_threshold,
            is_gt_available)

        is_to_interpolate = np.logical_and(is_gt_available, is_gap_unavailable)
        train_segment = np.zeros(decode_img.shape[:2])
        train_segment[is_depth_close] = 1
        train_segment[is_to_interpolate] = 2

        # mask = is_gt_available * 1.0 # GT
        mask = is_depth_close * 1.0  # no-complement
        # mask = is_train_area * 1.0 # complement

        # delete mask edge
        if is_edge_crop:
            # kernel = np.ones((mask_edge_size, mask_edge_size), np.uint8)
            # mask = cv2.erode(mask, kernel, iterations=1)

            edge_size = mask_edge_size
            mask_filter = np.zeros_like(mask)
            for edge in range(1, edge_size):
                edge_2 = edge * 2
                mask_filter[edge:b_h - edge,
                            edge:b_w - edge] = mask[:b_h - edge_2,
                                                    edge:b_w - edge]
                mask *= mask_filter
                mask_filter[edge:b_h - edge,
                            edge:b_w - edge] = mask[edge:b_h - edge, edge_2:]
                mask *= mask_filter
                mask_filter[edge:b_h - edge,
                            edge:b_w - edge] = mask[edge_2:, edge:b_w - edge]
                mask *= mask_filter
                mask_filter[edge:b_h - edge, edge:b_w -
                            edge] = mask[edge:b_h - edge, :b_w - edge_2]
                mask *= mask_filter

                for i in range(2):
                    for j in range(2):
                        mask_filter[edge * i:b_h - edge * (1 - i),
                                    edge * j:b_w - edge *
                                    (1 - j)] = mask[edge * (1 - i):b_h -
                                                    edge * i, edge *
                                                    (1 - j):b_h - edge * j]
                        mask *= mask_filter

        mask_gt = is_gt_available * 1.0

        mask_length = np.sum(mask)

        # cv2.imwrite(predict_dir + '/mask-{:05d}.png'.format(test_idx),
        #             (mask * 255).astype(np.uint8))

        predict_diff = decode_img[:, :, 0].copy()

        if is_pred_smooth:
            predict_depth = common_tools.gaussian_filter(
                predict_diff, 2, 0.002)

        depth_gt_masked = depth_gt * mask
        gt_diff = (depth_gt - depth_gap) * mask
        predict_diff_masked = predict_diff * mask

        # predict normalization
        if is_predict_norm_local:
            patch_size = norm_patch_size

            if is_norm_local_pix:
                p = norm_patch_size
                new_pred_diff = np.zeros_like(predict_diff_masked)
                new_mask = mask.copy()
                for i in range(p + 1, batch_shape[0] - p - 1):
                    for j in range(p + 1, batch_shape[1] - p - 1):
                        if not mask[i, j]:
                            new_pred_diff[i, j] = 0
                            continue
                        local_mask = mask[i - p:i + p + 1, j - p:j + p + 1]
                        local_gt_diff = gt_diff[i - p:i + p + 1,
                                                j - p:j + p + 1]
                        local_pred = predict_diff_masked[i - p:i + p + 1,
                                                         j - p:j + p + 1]
                        local_mask_len = np.sum(local_mask)
                        patch_len = (p * 2 + 1)**2
                        if local_mask_len < patch_len * patch_rate / 100:
                            new_pred_diff[i, j] = 0
                            new_mask[i, j] = False
                            continue
                        local_mean_gt = np.sum(local_gt_diff) / local_mask_len
                        local_mean_pred = np.sum(local_pred) / local_mask_len
                        local_sd_gt = np.sqrt(
                            np.sum(np.square(local_gt_diff - local_mean_gt)) /
                            local_mask_len)
                        local_sd_pred = np.sqrt(
                            np.sum(np.square(local_pred - local_mean_pred)) /
                            local_mask_len)
                        if is_fix_inv_local:
                            new_local_gt = local_gt_diff - local_mean_gt
                            new_local_pred = (local_pred - local_mean_pred) * (
                                local_sd_gt / local_sd_pred)
                            new_local_pred_inv = new_local_pred.copy() * -1
                            new_local_err = np.sqrt(
                                np.sum(np.square(new_local_gt -
                                                 new_local_pred)))
                            new_local_err_inv = np.sqrt(
                                np.sum(
                                    np.square(new_local_gt -
                                              new_local_pred_inv)))
                            if new_local_err < new_local_err_inv:
                                new_pred_diff[
                                    i,
                                    j] = new_local_pred[p, p] + local_mean_gt
                            else:
                                new_pred_diff[i, j] = new_local_pred_inv[
                                    p, p] + local_mean_gt
                        else:
                            new_pred_diff[i, j] = (
                                predict_diff[i, j] - local_mean_pred
                            ) * (local_sd_gt / local_sd_pred) + local_mean_gt
                predict_diff = new_pred_diff
                mask = new_mask
                mask[:p, :] = False
                mask[batch_shape[0] - p:, :] = False
                mask[:, :p] = False
                mask[:, batch_shape[1] - p:] = False
                mask *= 1.0
                mask_length = np.sum(mask)
            else:
                for i in range(batch_shape[0] // p):
                    for j in range(batch_shape[1] // p):
                        local_mask = mask[p * i:p * (i + 1), p * j:p * (j + 1)]
                        local_gt_diff = gt_diff[p * i:p * (i + 1),
                                                p * j:p * (j + 1)]
                        local_pred = predict_diff_masked[p * i:p * (i + 1),
                                                         p * j:p * (j + 1)]
                        local_mask_len = np.sum(local_mask)
                        if local_mask_len < 10:
                            predict_diff[p * i:p * (i + 1),
                                         p * j:p * (j + 1)] = 0
                            continue
                        local_mean_gt = np.sum(local_gt_diff) / local_mask_len
                        local_mean_pred = np.sum(local_pred) / local_mask_len
                        local_sd_gt = np.sqrt(
                            np.sum(np.square(local_gt_diff - local_mean_gt)) /
                            local_mask_len)
                        local_sd_pred = np.sqrt(
                            np.sum(np.square(local_pred - local_mean_pred)) /
                            local_mask_len)
                        predict_diff[
                            p * i:p * (i + 1), p * j:p *
                            (j + 1)] = (local_pred - local_mean_pred) * (
                                local_sd_gt / local_sd_pred) + local_mean_gt

        elif is_predict_norm:
            mean_gt = np.sum(gt_diff) / mask_length
            mean_predict = np.sum(predict_diff_masked) / mask_length
            gt_diff -= mean_gt
            predict_diff -= mean_predict
            out_diff_R = predict_diff.copy()  # save diff
            sd_gt = np.sqrt(np.sum(np.square(gt_diff * mask)) / mask_length)
            sd_predict = np.sqrt(
                np.sum(np.square(predict_diff * mask)) / mask_length)
            predict_diff *= sd_gt / sd_predict
            predict_diff += mean_gt

        ###############
        depth_gt_masked = depth_gt * mask
        gt_diff = (depth_gt - depth_gap) * mask
        predict_diff_masked = predict_diff * mask

        # reverse predict
        if is_pred_reverse:
            predict_depth = predict_diff * -1.0  # reverse

            # difference learn
            predict_depth += depth_gap
            predict_masked = predict_depth * mask

            # ajust bias, calc error
            if is_pred_ajust:
                mean_depth_gt = np.sum(depth_gt_masked) / mask_length
                mean_depth_pred = np.sum(predict_masked) / mask_length
                predict_depth += mean_depth_gt - mean_depth_pred
                predict_masked += mean_depth_gt - mean_depth_pred

            # error
            depth_err_abs_R = np.abs(depth_gt - depth_gap)
            depth_err_sqr_R = np.square(depth_gt - depth_gap)
            if is_pred_ajust:
                predict_err_abs_R = np.abs(depth_gt - predict_depth)
                predict_err_sqr_R = np.square(depth_gt - predict_depth)
            else:
                predict_err_abs_R = np.abs(depth_gt - predict_depth)
                predict_err_sqr_R = np.square(depth_gt - predict_depth)

            # error image
            depth_err_R = depth_err_abs_R
            predict_err_R = predict_err_abs_R
            predict_err_masked_R = predict_err_R * mask
            # Mean Absolute Error
            predict_MAE_R = np.sum(predict_err_abs_R * mask) / mask_length
            depth_MAE_R = np.sum(depth_err_abs_R * mask) / mask_length
            # Mean Squared Error
            predict_MSE_R = np.sum(predict_err_sqr_R * mask) / mask_length
            depth_MSE_R = np.sum(depth_err_sqr_R * mask) / mask_length
            # Root Mean Square Error
            predict_RMSE_R = np.sqrt(predict_MSE_R)
            depth_RMSE_R = np.sqrt(depth_MSE_R)
            #################################################################

        predict_depth = predict_diff
        # difference learn
        predict_depth += depth_gap
        predict_masked = predict_depth * mask

        # ajust bias, calc error
        if is_pred_ajust:
            mean_depth_gt = np.sum(depth_gt_masked) / mask_length
            mean_depth_pred = np.sum(predict_masked) / mask_length
            predict_depth += mean_depth_gt - mean_depth_pred
            predict_masked += mean_depth_gt - mean_depth_pred

        # error
        depth_err_abs = np.abs(depth_gt - depth_gap)
        depth_err_sqr = np.square(depth_gt - depth_gap)
        depth_err_diff = depth_gt - depth_gap
        if is_pred_ajust:
            predict_err_abs = np.abs(depth_gt - predict_depth)
            predict_err_sqr = np.square(depth_gt - predict_depth)
        else:
            predict_err_abs = np.abs(depth_gt - predict_depth)
            predict_err_sqr = np.square(depth_gt - predict_depth)

        # error image ##################################################
        depth_err = depth_err_abs
        predict_err = predict_err_abs
        predict_err_masked = predict_err * mask
        #################################################################

        # Mean Absolute Error
        predict_MAE = np.sum(predict_err_abs * mask) / mask_length
        depth_MAE = np.sum(depth_err_abs * mask) / mask_length
        # Mean Squared Error
        predict_MSE = np.sum(predict_err_sqr * mask) / mask_length
        depth_MSE = np.sum(depth_err_sqr * mask) / mask_length
        # Root Mean Square Error
        predict_RMSE = np.sqrt(predict_MSE)
        depth_RMSE = np.sqrt(depth_MSE)

        # SD
        sd_ae_depth = np.sqrt(
            np.sum(np.square(depth_err_abs - depth_MAE) * mask) / mask_length)
        sd_ae_pred = np.sqrt(
            np.sum(np.square(predict_err_abs - predict_MAE) * mask) /
            mask_length)
        sd_rse_depth = np.sqrt(
            np.sum(np.square(np.sqrt(depth_err_sqr) - depth_RMSE) * mask) /
            mask_length)
        sd_rse_pred = np.sqrt(
            np.sum(np.square(np.sqrt(predict_err_sqr) - predict_RMSE) * mask) /
            mask_length)

        if is_pred_pix_reverse:  # Inverse on Pix
            if is_reverse_threshold:  # Inverse by Threshold
                predict_err_abs = np.where(
                    np.logical_and(predict_err_abs > r_thre,
                                   predict_err_abs > predict_err_abs_R),
                    predict_err_abs_R, predict_err_abs)
                predict_err_sqr = np.where(
                    np.logical_and(predict_err_sqr > r_thre**2,
                                   predict_err_sqr > predict_err_sqr_R),
                    predict_err_sqr_R, predict_err_sqr)
            else:
                predict_err_abs = np.where(predict_err_abs < predict_err_abs_R,
                                           predict_err_abs, predict_err_abs_R)
                predict_err_sqr = np.where(predict_err_sqr < predict_err_sqr_R,
                                           predict_err_sqr, predict_err_sqr_R)
            predict_err = predict_err_abs
            predict_err_masked = predict_err * mask
            predict_MAE = np.sum(predict_err_abs * mask) / mask_length
            predict_MSE = np.sum(predict_err_sqr * mask) / mask_length
            predict_RMSE = np.sqrt(predict_MSE)
        elif is_pred_patch_inverse:  # Inverse on Patch
            p = norm_patch_size
            for i in range(batch_shape[0] // p):
                for j in range(batch_shape[1] // p):
                    err_abs_patch = predict_err_abs[p * i:p * (i + 1),
                                                    p * j:p * (j + 1)]
                    err_abs_patch_R = predict_err_abs_R[p * i:p * (i + 1),
                                                        p * j:p * (j + 1)]
                    err_sqr_patch = predict_err_sqr[p * i:p * (i + 1),
                                                    p * j:p * (j + 1)]
                    err_sqr_patch_R = predict_err_sqr_R[p * i:p * (i + 1),
                                                        p * j:p * (j + 1)]
                    if np.sum(err_sqr_patch) < np.sum(err_abs_patch_R):
                        predict_err_abs[p * i:p * (i + 1),
                                        p * j:p * (j + 1)] = err_abs_patch
                        predict_err_sqr[p * i:p * (i + 1),
                                        p * j:p * (j + 1)] = err_sqr_patch
                    else:
                        predict_err_abs[p * i:p * (i + 1),
                                        p * j:p * (j + 1)] = err_abs_patch_R
                        predict_err_sqr[p * i:p * (i + 1),
                                        p * j:p * (j + 1)] = err_sqr_patch_R

        elif is_pred_reverse:
            if predict_RMSE > predict_RMSE_R:
                depth_err = depth_err_R
                predict_err = predict_err_R
                predict_err_masked = predict_err_masked_R
                predict_MAE = predict_MAE_R
                depth_MAE = depth_MAE_R
                predict_MSE = predict_MSE_R
                depth_MSE = depth_MSE_R
                predict_RMSE = predict_RMSE_R
                depth_RMSE = depth_RMSE_R
                out_diff = out_diff_R

        # output difference
        if is_save_diff:
            net_out_dir = predict_dir + '/net_output/'
            os.makedirs(net_out_dir, exist_ok=True)
            if test_idx in save_img_range:
                np.save(net_out_dir + '{:05d}.npy'.format(test_idx), out_diff)
                out_diff_depth = out_diff + 1
                xyz_out_diff = depth_tools.convert_depth_to_coords(
                    out_diff_depth, cam_params)
                depth_tools.dump_ply(
                    net_out_dir + '{:05d}.ply'.format(test_idx),
                    xyz_out_diff.reshape(-1, 3).tolist())

        err_strings += str(test_idx)
        if test_idx in test_range:
            # if test_idx not in train_range:
            err_strings += ',test,'
        else:
            err_strings += ',train,'
        for string in [
                depth_MAE, predict_MAE, depth_RMSE, predict_RMSE, sd_ae_depth,
                sd_ae_pred, sd_rse_depth, sd_rse_pred
        ]:
            err_strings += str(string) + ','
        err_strings.rstrip(',')
        err_strings = err_strings[:-1] + '\n'

        predict_loss = predict_MAE
        depth_loss = depth_MAE

        # save predicted depth
        if is_save_depth_img:
            if test_idx in save_img_range:
                predict_bmp = depth_tools.pack_float_to_bmp_bgra(
                    predict_masked)
                cv2.imwrite(
                    predict_dir + '/predict-{:03d}.bmp'.format(test_idx),
                    predict_bmp)

        # save ply
        if is_save_ply:
            if test_idx in save_ply_range:
                if is_masked_ply:
                    xyz_predict_masked = depth_tools.convert_depth_to_coords(
                        predict_masked, cam_params)
                    depth_tools.dump_ply(
                        predict_dir + '/predict_masked-%03d.ply' % test_idx,
                        xyz_predict_masked.reshape(-1, 3).tolist())
                else:
                    xyz_predict = depth_tools.convert_depth_to_coords(
                        predict_depth, cam_params)
                    depth_tools.dump_ply(
                        predict_dir + '/predict-%03d.ply' % test_idx,
                        xyz_predict.reshape(-1, 3).tolist())

        # save fig
        # if test_idx in test_range:
        if test_idx in save_img_range:
            # layout
            fig = plt.figure(figsize=(7, 5))
            gs_master = GridSpec(nrows=2,
                                 ncols=2,
                                 height_ratios=[1, 1],
                                 width_ratios=[3, 0.1])
            gs_1 = GridSpecFromSubplotSpec(nrows=1,
                                           ncols=3,
                                           subplot_spec=gs_master[0, 0],
                                           wspace=0.05,
                                           hspace=0)
            gs_2 = GridSpecFromSubplotSpec(nrows=1,
                                           ncols=3,
                                           subplot_spec=gs_master[1, 0],
                                           wspace=0.05,
                                           hspace=0)
            gs_3 = GridSpecFromSubplotSpec(nrows=2,
                                           ncols=1,
                                           subplot_spec=gs_master[0:1, 1])

            ax_enh0 = fig.add_subplot(gs_1[0, 0])
            ax_enh1 = fig.add_subplot(gs_1[0, 1])
            ax_enh2 = fig.add_subplot(gs_1[0, 2])

            ax_misc0 = fig.add_subplot(gs_2[0, 0])

            ax_err_gap = fig.add_subplot(gs_2[0, 1])
            ax_err_pred = fig.add_subplot(gs_2[0, 2])

            ax_cb0 = fig.add_subplot(gs_3[0, 0])
            ax_cb1 = fig.add_subplot(gs_3[1, 0])

            for ax in [
                    ax_enh0, ax_enh1, ax_enh2, ax_misc0, ax_err_gap,
                    ax_err_pred
            ]:
                ax.axis('off')

            # close up
            mean = np.sum(depth_gt_masked) / mask_length
            vmin_s, vmax_s = mean - vm_range, mean + vm_range

            ax_enh0.imshow(depth_gt_masked,
                           cmap='jet',
                           vmin=vmin_s,
                           vmax=vmax_s)
            ax_enh1.imshow(depth_gap * mask,
                           cmap='jet',
                           vmin=vmin_s,
                           vmax=vmax_s)
            ax_enh2.imshow(predict_masked,
                           cmap='jet',
                           vmin=vmin_s,
                           vmax=vmax_s)

            ax_enh0.set_title('Ground Truth')
            ax_enh1.set_title('Low-res')
            ax_enh2.set_title('Ours')

            # misc
            ax_misc0.imshow(shading_bgr[:, :, ::-1])

            # error
            is_scale_err_mm = True
            if is_scale_err_mm:
                scale_err = 1000
            else:
                scale_err = 1

            vmin_e, vmax_e = 0, vm_e_range * scale_err
            ax_err_gap.imshow(depth_err * mask * scale_err,
                              cmap='jet',
                              vmin=vmin_e,
                              vmax=vmax_e)
            ax_err_pred.imshow(predict_err_masked * scale_err,
                               cmap='jet',
                               vmin=vmin_e,
                               vmax=vmax_e)

            # colorbar
            plt.tight_layout()
            fig.savefig(io.BytesIO())
            cb_offset = -0.05

            plt.colorbar(ScalarMappable(colors.Normalize(vmin=vmin_s,
                                                         vmax=vmax_s),
                                        cmap='jet'),
                         cax=ax_cb0)
            im_pos, cb_pos = ax_enh2.get_position(), ax_cb1.get_position()
            ax_cb0.set_position([
                cb_pos.x0 + cb_offset, im_pos.y0, cb_pos.x1 - cb_pos.x0,
                im_pos.y1 - im_pos.y0
            ])
            ax_cb0.set_xlabel('                [m]')

            plt.colorbar(ScalarMappable(colors.Normalize(vmin=vmin_e,
                                                         vmax=vmax_e),
                                        cmap='jet'),
                         cax=ax_cb1)
            im_pos, cb_pos = ax_err_pred.get_position(), ax_cb1.get_position()
            ax_cb1.set_position([
                cb_pos.x0 + cb_offset, im_pos.y0, cb_pos.x1 - cb_pos.x0,
                im_pos.y1 - im_pos.y0
            ])
            if is_scale_err_mm:
                ax_cb1.set_xlabel('                [mm]')
            else:
                ax_cb1.set_xlabel('                [m]')

            plt.savefig(predict_dir + '/result-{:03d}.png'.format(test_idx),
                        dpi=300)
            plt.close()

    with open(predict_dir + '/error_compare.txt', mode='w') as f:
        f.write(err_strings)

    compare_error.compare_error(predict_dir + '/')
Beispiel #3
0
def main():
    if data_type is '0':
        src_rec_dir = src_dir + '/rec'
        # src_rec_dir = src_dir + '/rec_ajusted'
        # src_rec_dir = src_dir + '/lowres' ############################ median filter depth
        src_frame_dir = src_dir + '/frame'
        src_gt_dir = src_dir + '/gt'
        src_shading_dir = src_dir + '/shading'
    elif data_type is '1':
        src_frame_dir = src_dir + '/proj'
        src_gt_dir = src_dir + '/gt'
        src_shading_dir = src_dir + '/shade'
        src_rec_dir = src_dir + '/rec'
    elif data_type is '2':
        src_frame_dir = src_dir + '/proj'
        src_gt_dir = src_dir + '/gt'
        src_shading_dir = src_dir + '/shade'
        src_rec_dir = src_dir + '/rec'
    elif data_type is '3':
        src_frame_dir = src_dir + '/proj'
        src_gt_dir = src_dir + '/gt'
        src_shading_dir = src_dir + '/shade'
        src_rec_dir = src_dir + '/rec'
        # src_rec_dir = src_dir + '/lowres'
    elif data_type is '4':
        src_frame_dir = src_dir + '/proj'
        src_gt_dir = src_dir + '/gt'
        src_shading_dir = src_dir + '/shade'
        src_rec_dir = src_dir + '/rec'

    if is_input_depth:
        if is_input_frame:
            ch_num = 3
            if is_input_coord:
                ch_num = 5
        else:
            ch_num = 2
    else:
        if is_input_frame:
            ch_num = 2
        else:
            ch_num = 1

    # model configuration
    if net_type is '0':
        model = network.build_unet_model(batch_shape, ch_num)
        # model = network2.BuildUnet(num_ch=ch_num,lr=0.001,rate_dropout=0.1, shape_patch=batch_shape)
    elif net_type is '1':
        model = network.build_resnet_model(batch_shape, ch_num)
    elif net_type is '2':
        model = network.build_dense_resnet_model(batch_shape, ch_num)

    # log
    df_log = pd.read_csv(out_dir + '/training.log')
    if is_select_val:
        df = df_log['val_loss']
    else:
        df = df_log['loss']

    df.index = df.index + 1
    if is_select_min_loss_model:
        df_select = df[df.index > epoch_num - select_range]
        df_select = df_select[df_select.index <= epoch_num]
        df_select = df_select[df_select.index % save_period == 0]
        min_loss = df_select.min()
        idx_min_loss = df_select.idxmin()
        model.load_weights(out_dir + '/model/model-%03d.hdf5' % idx_min_loss)
        # model.load_weights(out_dir + '/model/model-best.hdf5')
        # model.load_weights(out_dir + '/model-best.hdf5')
    else:
        # model.load_weights(out_dir + '/model-final.hdf5')
        model.load_weights(out_dir + '/model/model-%03d.hdf5' % epoch_num)

    # loss graph
    lossgraph_dir = predict_dir + '/loss_graph'
    os.makedirs(lossgraph_dir, exist_ok=True)
    arr_loss = df.values
    arr_epoch = df.index
    if is_select_val:
        init_epochs = [0, 10, int(epoch_num / 2), epoch_num - 200]
    else:
        init_epochs = [0, 10, epoch_num - 200, epoch_num - 100]

    for init_epo in init_epochs:
        if init_epo < 0:
            continue
        if init_epo >= epoch_num:
            continue
        plt.figure()
        plt.plot(arr_epoch[init_epo:epoch_num], arr_loss[init_epo:epoch_num])
        if is_select_min_loss_model:
            plt.plot(idx_min_loss, min_loss, 'ro')
        plt.xlabel('epoch')
        plt.ylabel('loss')
        plt.title('{} : epoch {} - {}'.format(df.name, init_epo + 1,
                                              epoch_num))
        plt.savefig(lossgraph_dir +
                    '/loss_{}-{}.pdf'.format(init_epo + 1, epoch_num))

    # error compare txt
    err_strings = 'index,type,MAE depth,MAE predict,RMSE depth,RMSE predict,SD AE depth,SD AE predict,SD RSE depth,SD RSE predict\n'

    os.makedirs(predict_dir, exist_ok=True)
    for test_idx in tqdm(data_idx_range):
        if data_type is '0':
            src_bgra = src_frame_dir + '/frame{:03d}.png'.format(test_idx)
            # src_depth_gap = src_rec_dir + '/depth{:03d}.png'.format(test_idx)
            src_depth_gap = src_rec_dir + '/depth{:03d}.bmp'.format(test_idx)
            src_depth_gt = src_gt_dir + '/gt{:03d}.bmp'.format(test_idx)
            # src_shading = src_shading_dir + '/shading{:03d}.png'.format(test_idx)
            src_shading = src_shading_dir + '/shading{:03d}.bmp'.format(
                test_idx)
        elif data_type is '1':
            src_bgra = src_frame_dir + '/{:05d}.png'.format(test_idx)
            src_depth_gt = src_gt_dir + '/{:05d}.bmp'.format(test_idx)
            src_shading = src_shading_dir + '/{:05d}.png'.format(test_idx)
            src_depth_gap = src_rec_dir + '/{:05d}.bmp'.format(test_idx)
        elif data_type is '2':
            src_bgra = src_frame_dir + '/{:05d}.png'.format(test_idx)
            src_depth_gt = src_gt_dir + '/{:05d}.bmp'.format(test_idx)
            src_shading = src_shading_dir + '/{:05d}.png'.format(test_idx)
            src_depth_gap = src_rec_dir + '/{:05d}.bmp'.format(test_idx)
        elif data_type is '3':
            src_bgra = src_frame_dir + '/{:05d}.png'.format(test_idx)
            src_depth_gt = src_gt_dir + '/{:05d}.bmp'.format(test_idx)
            # src_shading = src_shading_dir + '/{:05d}.bmp'.format(test_idx)
            src_shading = src_shading_dir + '/{:05d}.png'.format(test_idx)
            src_depth_gap = src_rec_dir + '/{:05d}.bmp'.format(test_idx)
        elif data_type is '4':
            src_bgra = src_frame_dir + '/{:05d}.png'.format(test_idx)
            src_depth_gt = src_gt_dir + '/{:05d}.bmp'.format(test_idx)
            src_shading = src_shading_dir + '/{:05d}.png'.format(test_idx)
            src_depth_gap = src_rec_dir + '/{:05d}.bmp'.format(test_idx)

        # read images
        bgr = cv2.imread(src_bgra, -1) / 255.
        bgr = bgr[:1200, :1200, :]
        depth_img_gap = cv2.imread(src_depth_gap, -1)
        depth_img_gap = depth_img_gap[:1200, :1200, :]
        # depth_gap = depth_tools.unpack_png_to_float(depth_img_gap)
        depth_gap = depth_tools.unpack_bmp_bgra_to_float(depth_img_gap)

        depth_img_gt = cv2.imread(src_depth_gt, -1)
        depth_img_gt = depth_img_gt[:1200, :1200, :]
        depth_gt = depth_tools.unpack_bmp_bgra_to_float(depth_img_gt)
        img_shape = bgr.shape[:2]

        # shading_bgr = cv2.imread(src_shading, -1)
        shading_bgr = cv2.imread(src_shading, 1)
        shading_bgr = shading_bgr[:1200, :1200, :]
        shading_gray = cv2.imread(src_shading, 0)  # GrayScale
        shading_gray = shading_gray[:1200, :1200]
        shading = shading_gray

        is_shading_available = shading > 0
        mask_shading = is_shading_available * 1.0
        # depth_gap = depth_gt[:, :] * mask_shading
        # mean_depth = np.sum(depth_gap) / np.sum(mask_shading)
        # depth_gap = mean_depth * mask_shading
        depth_gap *= mask_shading

        if is_shading_norm:  # shading norm : mean 0, var 1
            is_shading_available = shading > 8.0  #16.0
            mask_shading = is_shading_available * 1.0
            mean_shading = np.sum(
                shading * mask_shading) / np.sum(mask_shading)
            var_shading = np.sum(
                np.square((shading - mean_shading) *
                          mask_shading)) / np.sum(mask_shading)
            std_shading = np.sqrt(var_shading)
            shading = (shading - mean_shading) / std_shading
        else:
            shading = shading / 255.

        # is_depth_available = depth_gt > depth_threshold
        # mask_depth = is_depth_available * 1.0
        # depth_gap = np.zeros_like(depth_gt)
        # mean_depth = np.sum(depth_gt) / np.sum(mask_depth)
        # depth_gap = mean_depth * mask_depth

        # normalization (may not be needed)
        # norm_factor = depth_gap.max()
        # depth_gap /= norm_factor
        # depth_gt /= depth_gt.max()

        depth_thre = depth_threshold

        if is_input_coord:
            coord_x = np.linspace(0, 1, img_size)
            coord_y = np.linspace(0, 1, img_size)
            grid_x, grid_y = np.meshgrid(coord_x, coord_y)

        # merge bgr + depth_gap
        if is_input_frame:
            if is_input_depth:
                bgrd = np.dstack([shading[:, :], depth_gap, bgr[:, :, 0]])
                if is_input_coord:
                    bgrd = np.dstack([
                        shading[:, :], depth_gap, bgr[:, :, 0], grid_x, grid_y
                    ])
            else:
                bgrd = np.dstack([shading[:, :], bgr[:, :, 0]])
        else:
            bgrd = np.dstack([shading[:, :], depth_gap])

        # clip batches
        b_top, b_left = batch_tl
        b_h, b_w = batch_shape
        top_coords = range(b_top, img_shape[0], b_h)
        left_coords = range(b_left, img_shape[1], b_w)

        # add test data
        x_test = []
        for top, left in product(top_coords, left_coords):

            def clip_batch(img, top_left, size):
                t, l, h, w = *top_left, *size
                return img[t:t + h, l:l + w]

            batch_test = clip_batch(bgrd, (top, left), batch_shape)

            if is_input_depth or is_input_frame:
                x_test.append(batch_test)
            else:
                x_test.append(batch_test[:, :, 0].reshape((*batch_shape, 1)))

        # predict
        x_test = np.array(x_test)[:]
        predict = model.predict(x_test, batch_size=1)  # w/o denormalization
        # predict = model.predict(
        #     x_test, batch_size=1) * norm_factor  # w/ denormalization
        # decode_img = np.hstack([
        #     np.vstack([predict[0], predict[2]]),
        #     np.vstack([predict[1], predict[3]])
        # ])[:, :, 0:2]
        decode_img = predict[0][:, :, 0:2]

        # training types
        is_gt_available = depth_gt > depth_thre
        is_gap_unavailable = depth_gap < depth_thre

        is_depth_close = np.logical_and(
            np.abs(depth_gap - depth_gt) < difference_threshold,
            is_gt_available)

        is_to_interpolate = np.logical_and(is_gt_available, is_gap_unavailable)
        train_segment = np.zeros(decode_img.shape[:2])
        train_segment[is_depth_close] = 1
        train_segment[is_to_interpolate] = 2

        # is_train_area = np.logical_or(is_depth_close, is_to_interpolate)

        # mask = is_gt_available * 1.0 # GT
        mask = is_depth_close * 1.0  # no-complement
        # mask = is_train_area * 1.0 # complement

        # delete mask edge
        if is_edge_crop:
            # kernel = np.ones((mask_edge_size, mask_edge_size), np.uint8)
            # mask = cv2.erode(mask, kernel, iterations=1)

            edge_size = mask_edge_size
            mask_filter = np.zeros_like(mask)
            for edge in range(1, edge_size):
                edge_2 = edge * 2
                mask_filter[edge:b_h - edge,
                            edge:b_w - edge] = mask[:b_h - edge_2,
                                                    edge:b_w - edge]
                mask *= mask_filter
                mask_filter[edge:b_h - edge,
                            edge:b_w - edge] = mask[edge:b_h - edge, edge_2:]
                mask *= mask_filter
                mask_filter[edge:b_h - edge,
                            edge:b_w - edge] = mask[edge_2:, edge:b_w - edge]
                mask *= mask_filter
                mask_filter[edge:b_h - edge, edge:b_w -
                            edge] = mask[edge:b_h - edge, :b_w - edge_2]
                mask *= mask_filter

                for i in range(2):
                    for j in range(2):
                        mask_filter[edge * i:b_h - edge * (1 - i),
                                    edge * j:b_w - edge *
                                    (1 - j)] = mask[edge * (1 - i):b_h -
                                                    edge * i, edge *
                                                    (1 - j):b_h - edge * j]
                        mask *= mask_filter

        mask_gt = is_gt_available * 1.0

        mask_length = np.sum(mask)

        # cv2.imwrite(predict_dir + '/mask-{:05d}.png'.format(test_idx),
        #             (mask * 255).astype(np.uint8))

        predict_diff = decode_img[:, :, 0].copy()

        if is_pred_smooth:
            predict_depth = common_tools.gaussian_filter(
                predict_diff, 2, 0.002)

        depth_gt_masked = depth_gt * mask
        gt_diff = (depth_gt - depth_gap) * mask
        predict_diff_masked = predict_diff * mask

        # scale
        predict_diff /= difference_scaling
        predict_diff_masked /= difference_scaling

        # predict normalization
        if is_predict_norm_local:
            patch_size = norm_patch_size

            if is_norm_local_pix:
                # cp.cuda.set_allocator(cp.cuda.MemoryPool().malloc)
                # mask_float = mask * 1.0
                # kernel = np.ones((patch_size, patch_size))
                # patch_mask_len = cv2.filter2D(mask_float, -1, kernel, borderType=cv2.BORDER_CONSTANT).astype('int16')
                # patch_gt_sum = cv2.filter2D(gt_diff, -1, kernel, borderType=cv2.BORDER_CONSTANT)
                # patch_pred_sum = cv2.filter2D(predict_diff_masked, -1, kernel, borderType=cv2.BORDER_CONSTANT)
                # print(patch_mask_len[800:810, 800:810])
                # print(np.min(patch_mask_len))
                # print(patch_gt_sum[800:810, 800:810])
                # print(patch_pred_sum[800:810, 800:810])
                # patch_gt_mean = np.where(patch_mask_len < 10, 0, patch_gt_sum / patch_mask_len)
                # patch_pred_mean = np.where(patch_mask_len < 10, 0, patch_pred_sum / patch_mask_len)
                # print(patch_gt_mean[800:810, 800:810])
                # print(patch_pred_mean[800:810, 800:810])
                # print(np.max(patch_gt_mean))
                # print(np.max(patch_pred_mean))
                # print(patch_gt_mean)

                # gt_diff_cp = cp.asarray(gt_diff).astype(cp.float32)
                # pred_diff_cp = cp.asarray(predict_diff_masked).astype(cp.float32)
                # mask_cp = cp.asarray(mask_float).astype(cp.float32)
                # mask_len_cp = cp.asarray(patch_mask_len).astype(cp.float32)
                # patch_gt_mean_cp = cp.asarray(patch_gt_mean).astype(cp.float32)
                # patch_pred_mean_cp = cp.asarray(patch_pred_mean).astype(cp.float32)

                # new_pred_diff = cp.zeros_like(pred_diff_cp)
                # new_mask = cp.zeros_like(mask_cp)
                # height, width = pred_diff_cp.shape
                # get_norm_pred = cp.ElementwiseKernel(
                #     in_params='raw float32 gt_diff, raw float32 pred_diff, raw float32 mask, raw float32 mask_len, raw float32 gt_mean, raw float32 pred_mean, int16 height, int16 width, int16 patch_size',
                #     out_params='float32 new_pred_diff, float32 new_mask',
                #     preamble=\
                #     '''
                #     __device__ int get_x_idx(int i, int width) {
                #         return i % width;
                #     }
                #     __device__ int get_y_idx(int i, int height) {
                #         return i / height;
                #     }
                #     ''',
                #     operation=\
                #     '''
                #     int x = get_x_idx(i, width);
                #     int y = get_y_idx(i, height);
                #     int diameter = patch_size;
                #     int distance = (diameter - 1) / 2;
                #     if ( ((x >= distance) && (x < width - distance)) && ((y >= distance) && (y < height - distance)) && (mask[i] > 0) ) {
                #         if (mask_len[i] > 10) {
                #             float gt_sum = 0;
                #             float pred_sum = 0;
                #             for (int k=0; k<diameter; k++) {
                #                 for (int l=0; l<diameter; l++) {
                #                     float pixel_gt = gt_diff[i + (k-distance)*width + l - distance] - gt_mean[i];
                #                     float pixel_pred = pred_diff[i + (k-distance)*width + l - distance] - pred_mean[i];
                #                     gt_sum += pixel_gt * pixel_gt;
                #                     pred_sum += pixel_pred * pixel_pred;
                #                 }
                #             }
                #             float sd_gt = gt_sum;
                #             float sd_pred = pred_sum;
                #             new_pred_diff[i] = (pred_diff[i] - pred_mean[i]) * (sd_gt / sd_pred) + gt_mean[i];
                #             new_mask[i] = 1;
                #         } else {
                #             new_mask[i] = 0;
                #             new_pred_diff[i] = 0;
                #         }
                #     } else {
                #         new_mask[i] = 0;
                #         new_pred_diff[i] = 0;
                #     }
                #     ''',
                #     name='get_norm_pred'
                # )
                # get_norm_pred(gt_diff_cp, pred_diff_cp, mask_cp, mask_len_cp, patch_gt_mean_cp, patch_pred_mean_cp, height, width, patch_size, new_pred_diff, mask_cp)
                # predict_diff = cp.asnumpy(new_pred_diff)
                # mask = cp.asnumpy(new_mask)

                p = norm_patch_size
                new_pred_diff = np.zeros_like(predict_diff_masked)
                new_mask = mask.copy()
                for i in range(p + 1, batch_shape[0] - p - 1):
                    for j in range(p + 1, batch_shape[1] - p - 1):
                        if not mask[i, j]:
                            new_pred_diff[i, j] = 0
                            continue
                        local_mask = mask[i - p:i + p + 1, j - p:j + p + 1]
                        local_gt_diff = gt_diff[i - p:i + p + 1,
                                                j - p:j + p + 1]
                        local_pred = predict_diff_masked[i - p:i + p + 1,
                                                         j - p:j + p + 1]
                        local_mask_len = np.sum(local_mask)
                        patch_len = (p * 2 + 1)**2
                        if local_mask_len < patch_len * patch_rate / 100:
                            new_pred_diff[i, j] = 0
                            new_mask[i, j] = False
                            continue
                        local_mean_gt = np.sum(local_gt_diff) / local_mask_len
                        local_mean_pred = np.sum(local_pred) / local_mask_len
                        local_sd_gt = np.sqrt(
                            np.sum(np.square(local_gt_diff - local_mean_gt)) /
                            local_mask_len)
                        local_sd_pred = np.sqrt(
                            np.sum(np.square(local_pred - local_mean_pred)) /
                            local_mask_len)
                        if is_fix_inv_local:
                            new_local_gt = local_gt_diff - local_mean_gt
                            new_local_pred = (local_pred - local_mean_pred) * (
                                local_sd_gt / local_sd_pred)
                            new_local_pred_inv = new_local_pred.copy() * -1
                            new_local_err = np.sqrt(
                                np.sum(np.square(new_local_gt -
                                                 new_local_pred)))
                            new_local_err_inv = np.sqrt(
                                np.sum(
                                    np.square(new_local_gt -
                                              new_local_pred_inv)))
                            if new_local_err < new_local_err_inv:
                                new_pred_diff[
                                    i,
                                    j] = new_local_pred[p, p] + local_mean_gt
                            else:
                                new_pred_diff[i, j] = new_local_pred_inv[
                                    p, p] + local_mean_gt
                        else:
                            new_pred_diff[i, j] = (
                                predict_diff[i, j] - local_mean_pred
                            ) * (local_sd_gt / local_sd_pred) + local_mean_gt
                predict_diff = new_pred_diff
                mask = new_mask
                mask[:p, :] = False
                mask[batch_shape[0] - p:, :] = False
                mask[:, :p] = False
                mask[:, batch_shape[1] - p:] = False
                # print(mask[40:60, 1140:1160])
                mask *= 1.0
                # print(mask_length)
                # print(mask[40:60, 1140:1160])
                mask_length = np.sum(mask)
                # print(mask_length)
            else:
                for i in range(batch_shape[0] // p):
                    for j in range(batch_shape[1] // p):
                        local_mask = mask[p * i:p * (i + 1), p * j:p * (j + 1)]
                        local_gt_diff = gt_diff[p * i:p * (i + 1),
                                                p * j:p * (j + 1)]
                        local_pred = predict_diff_masked[p * i:p * (i + 1),
                                                         p * j:p * (j + 1)]
                        local_mask_len = np.sum(local_mask)
                        if local_mask_len < 10:
                            predict_diff[p * i:p * (i + 1),
                                         p * j:p * (j + 1)] = 0
                            continue
                        local_mean_gt = np.sum(local_gt_diff) / local_mask_len
                        local_mean_pred = np.sum(local_pred) / local_mask_len
                        local_sd_gt = np.sqrt(
                            np.sum(np.square(local_gt_diff - local_mean_gt)) /
                            local_mask_len)
                        local_sd_pred = np.sqrt(
                            np.sum(np.square(local_pred - local_mean_pred)) /
                            local_mask_len)
                        predict_diff[
                            p * i:p * (i + 1), p * j:p *
                            (j + 1)] = (local_pred - local_mean_pred) * (
                                local_sd_gt / local_sd_pred) + local_mean_gt

        elif is_predict_norm:
            mean_gt = np.sum(gt_diff) / mask_length
            mean_predict = np.sum(predict_diff_masked) / mask_length
            gt_diff -= mean_gt
            predict_diff -= mean_predict
            out_diff_R = predict_diff.copy()  # save diff
            sd_gt = np.sqrt(np.sum(np.square(gt_diff * mask)) / mask_length)
            sd_predict = np.sqrt(
                np.sum(np.square(predict_diff * mask)) / mask_length)
            predict_diff *= sd_gt / sd_predict
            predict_diff += mean_gt

        ###############
        depth_gt_masked = depth_gt * mask
        gt_diff = (depth_gt - depth_gap) * mask
        predict_diff_masked = predict_diff * mask

        # reverse predict
        if is_pred_reverse:
            predict_depth = predict_diff * -1.0  # reverse

            # difference learn
            predict_depth += depth_gap
            predict_masked = predict_depth * mask

            # ajust bias, calc error
            if is_pred_ajust:
                # mean_gt_diff = np.sum(gt_diff) / mask_length
                # mean_out_dif = np.sum(out_diff * mask) / mask_length
                # bias_out_dif = mean_out_dif - mean_gt_diff
                # out_diff_ajusted = out_diff - bias_out_dif
                mean_depth_gt = np.sum(depth_gt_masked) / mask_length
                mean_depth_pred = np.sum(predict_masked) / mask_length
                predict_depth += mean_depth_gt - mean_depth_pred
                predict_masked += mean_depth_gt - mean_depth_pred

            # error
            depth_err_abs_R = np.abs(depth_gt - depth_gap)
            depth_err_sqr_R = np.square(depth_gt - depth_gap)
            if is_pred_ajust:
                # predict_err_abs_R = np.abs(gt_diff - out_diff_ajusted)
                # predict_err_sqr_R = np.square(gt_diff - out_diff_ajusted)
                predict_err_abs_R = np.abs(depth_gt - predict_depth)
                predict_err_sqr_R = np.square(depth_gt - predict_depth)
            else:
                predict_err_abs_R = np.abs(depth_gt - predict_depth)
                predict_err_sqr_R = np.square(depth_gt - predict_depth)

            # error image
            depth_err_R = depth_err_abs_R
            predict_err_R = predict_err_abs_R
            predict_err_masked_R = predict_err_R * mask
            # Mean Absolute Error
            predict_MAE_R = np.sum(predict_err_abs_R * mask) / mask_length
            depth_MAE_R = np.sum(depth_err_abs_R * mask) / mask_length
            # Mean Squared Error
            predict_MSE_R = np.sum(predict_err_sqr_R * mask) / mask_length
            depth_MSE_R = np.sum(depth_err_sqr_R * mask) / mask_length
            # Root Mean Square Error
            predict_RMSE_R = np.sqrt(predict_MSE_R)
            depth_RMSE_R = np.sqrt(depth_MSE_R)
            #################################################################

        predict_depth = predict_diff
        # difference learn
        # predict_depth += depth_gap
        # predict_masked = predict_depth * mask

        # ajust bias, calc error
        if is_pred_ajust:
            # mean_gt_diff = np.sum(gt_diff) / mask_length
            # mean_out_dif = np.sum(out_diff * mask) / mask_length
            # bias_out_dif = mean_out_dif - mean_gt_diff
            # out_diff_ajusted = out_diff - bias_out_dif
            mean_depth_gt = np.sum(depth_gt_masked) / mask_length
            mean_depth_pred = np.sum(predict_masked) / mask_length
            predict_depth += mean_depth_gt - mean_depth_pred
            predict_masked += mean_depth_gt - mean_depth_pred

        # error
        # depth_err_abs = np.abs(depth_gt - depth_gap)
        # depth_err_sqr = np.square(depth_gt - depth_gap)
        # depth_err_diff = depth_gt - depth_gap
        depth_err_abs = np.abs(gt_diff)
        depth_err_sqr = np.square(gt_diff)
        depth_err_diff = gt_diff
        if is_pred_ajust:
            # predict_err_abs = np.abs(gt_diff - out_diff_ajusted)
            # predict_err_sqr = np.square(gt_diff - out_diff_ajusted)
            predict_err_abs = np.abs(depth_gt - predict_depth)
            predict_err_sqr = np.square(depth_gt - predict_depth)
        else:
            # predict_err_abs = np.abs(depth_gt - predict_depth)
            # predict_err_sqr = np.square(depth_gt - predict_depth)
            predict_err_abs = np.abs(gt_diff - predict_depth)
            predict_err_sqr = np.square(gt_diff - predict_depth)

        predict_depth += depth_gap
        predict_masked = predict_depth * mask

        # error image ##################################################
        depth_err = depth_err_abs
        predict_err = predict_err_abs
        predict_err_masked = predict_err * mask

        # depth_err = depth_err_diff
        # predict_err_masked = (depth_gt - predict_depth) * mask
        #################################################################

        # Mean Absolute Error
        predict_MAE = np.sum(predict_err_abs * mask) / mask_length
        depth_MAE = np.sum(depth_err_abs * mask) / mask_length
        # Mean Squared Error
        predict_MSE = np.sum(predict_err_sqr * mask) / mask_length
        depth_MSE = np.sum(depth_err_sqr * mask) / mask_length
        # Root Mean Square Error
        predict_RMSE = np.sqrt(predict_MSE)
        depth_RMSE = np.sqrt(depth_MSE)

        # SD
        sd_ae_depth = np.sqrt(
            np.sum(np.square(depth_err_abs - depth_MAE) * mask) / mask_length)
        sd_ae_pred = np.sqrt(
            np.sum(np.square(predict_err_abs - predict_MAE) * mask) /
            mask_length)
        sd_rse_depth = np.sqrt(
            np.sum(np.square(np.sqrt(depth_err_sqr) - depth_RMSE) * mask) /
            mask_length)
        sd_rse_pred = np.sqrt(
            np.sum(np.square(np.sqrt(predict_err_sqr) - predict_RMSE) * mask) /
            mask_length)

        if is_pred_pix_reverse:  # Inverse on Pix
            if is_reverse_threshold:  # Inverse by Threshold
                predict_err_abs = np.where(
                    np.logical_and(predict_err_abs > r_thre,
                                   predict_err_abs > predict_err_abs_R),
                    predict_err_abs_R, predict_err_abs)
                predict_err_sqr = np.where(
                    np.logical_and(predict_err_sqr > r_thre**2,
                                   predict_err_sqr > predict_err_sqr_R),
                    predict_err_sqr_R, predict_err_sqr)
            else:
                predict_err_abs = np.where(predict_err_abs < predict_err_abs_R,
                                           predict_err_abs, predict_err_abs_R)
                predict_err_sqr = np.where(predict_err_sqr < predict_err_sqr_R,
                                           predict_err_sqr, predict_err_sqr_R)
            predict_err = predict_err_abs
            predict_err_masked = predict_err * mask
            predict_MAE = np.sum(predict_err_abs * mask) / mask_length
            predict_MSE = np.sum(predict_err_sqr * mask) / mask_length
            predict_RMSE = np.sqrt(predict_MSE)
        elif is_pred_patch_inverse:  # Inverse on Patch
            p = norm_patch_size
            for i in range(batch_shape[0] // p):
                for j in range(batch_shape[1] // p):
                    err_abs_patch = predict_err_abs[p * i:p * (i + 1),
                                                    p * j:p * (j + 1)]
                    err_abs_patch_R = predict_err_abs_R[p * i:p * (i + 1),
                                                        p * j:p * (j + 1)]
                    err_sqr_patch = predict_err_sqr[p * i:p * (i + 1),
                                                    p * j:p * (j + 1)]
                    err_sqr_patch_R = predict_err_sqr_R[p * i:p * (i + 1),
                                                        p * j:p * (j + 1)]
                    if np.sum(err_sqr_patch) < np.sum(err_abs_patch_R):
                        predict_err_abs[p * i:p * (i + 1),
                                        p * j:p * (j + 1)] = err_abs_patch
                        predict_err_sqr[p * i:p * (i + 1),
                                        p * j:p * (j + 1)] = err_sqr_patch
                    else:
                        predict_err_abs[p * i:p * (i + 1),
                                        p * j:p * (j + 1)] = err_abs_patch_R
                        predict_err_sqr[p * i:p * (i + 1),
                                        p * j:p * (j + 1)] = err_sqr_patch_R

        elif is_pred_reverse:
            if predict_RMSE > predict_RMSE_R:
                depth_err = depth_err_R
                predict_err = predict_err_R
                predict_err_masked = predict_err_masked_R
                predict_MAE = predict_MAE_R
                depth_MAE = depth_MAE_R
                predict_MSE = predict_MSE_R
                depth_MSE = depth_MSE_R
                predict_RMSE = predict_RMSE_R
                depth_RMSE = depth_RMSE_R
                out_diff = out_diff_R

        # output difference
        if is_save_diff:
            net_out_dir = predict_dir + '/net_output/'
            os.makedirs(net_out_dir, exist_ok=True)
            if test_idx in save_img_range:
                np.save(net_out_dir + '{:05d}.npy'.format(test_idx), out_diff)
                out_diff_depth = out_diff + 1
                xyz_out_diff = depth_tools.convert_depth_to_coords(
                    out_diff_depth, cam_params)
                depth_tools.dump_ply(
                    net_out_dir + '{:05d}.ply'.format(test_idx),
                    xyz_out_diff.reshape(-1, 3).tolist())

        err_strings += str(test_idx)
        if test_idx in test_range:
            # if test_idx not in train_range:
            err_strings += ',test,'
        else:
            err_strings += ',train,'
        for string in [
                depth_MAE, predict_MAE, depth_RMSE, predict_RMSE, sd_ae_depth,
                sd_ae_pred, sd_rse_depth, sd_rse_pred
        ]:
            err_strings += str(string) + ','
        err_strings.rstrip(',')
        err_strings = err_strings[:-1] + '\n'

        predict_loss = predict_MAE
        depth_loss = depth_MAE

        # save predicted depth
        if is_save_depth_img:
            if test_idx in save_img_range:
                predict_bmp = depth_tools.pack_float_to_bmp_bgra(
                    predict_masked)
                cv2.imwrite(
                    predict_dir + '/predict-{:03d}.bmp'.format(test_idx),
                    predict_bmp)

        # save ply
        if is_save_ply:
            if test_idx in save_ply_range:
                if is_masked_ply:
                    xyz_predict_masked = depth_tools.convert_depth_to_coords(
                        predict_masked, cam_params)
                    depth_tools.dump_ply(
                        predict_dir + '/predict_masked-%03d.ply' % test_idx,
                        xyz_predict_masked.reshape(-1, 3).tolist())
                else:
                    xyz_predict = depth_tools.convert_depth_to_coords(
                        predict_depth, cam_params)
                    depth_tools.dump_ply(
                        predict_dir + '/predict-%03d.ply' % test_idx,
                        xyz_predict.reshape(-1, 3).tolist())

        # save fig
        # if test_idx in test_range:
        if test_idx in save_img_range:
            # layout
            fig = plt.figure(figsize=(7, 5))
            gs_master = GridSpec(nrows=2,
                                 ncols=2,
                                 height_ratios=[1, 1],
                                 width_ratios=[3, 0.1])
            gs_1 = GridSpecFromSubplotSpec(nrows=1,
                                           ncols=3,
                                           subplot_spec=gs_master[0, 0],
                                           wspace=0.05,
                                           hspace=0)
            gs_2 = GridSpecFromSubplotSpec(nrows=1,
                                           ncols=3,
                                           subplot_spec=gs_master[1, 0],
                                           wspace=0.05,
                                           hspace=0)
            gs_3 = GridSpecFromSubplotSpec(nrows=2,
                                           ncols=1,
                                           subplot_spec=gs_master[0:1, 1])

            ax_enh0 = fig.add_subplot(gs_1[0, 0])
            ax_enh1 = fig.add_subplot(gs_1[0, 1])
            ax_enh2 = fig.add_subplot(gs_1[0, 2])

            ax_misc0 = fig.add_subplot(gs_2[0, 0])

            ax_err_gap = fig.add_subplot(gs_2[0, 1])
            ax_err_pred = fig.add_subplot(gs_2[0, 2])

            ax_cb0 = fig.add_subplot(gs_3[0, 0])
            ax_cb1 = fig.add_subplot(gs_3[1, 0])

            for ax in [
                    ax_enh0, ax_enh1, ax_enh2, ax_misc0, ax_err_gap,
                    ax_err_pred
            ]:
                ax.axis('off')

            # close up
            # mean = np.sum(depth_gt_masked) / mask_length
            # vmin_s, vmax_s = mean - vm_range, mean + vm_range

            # whole
            gt_in_mask = depth_gt[np.nonzero(depth_gt * mask)]
            vmin_s, vmax_s = np.min(gt_in_mask), np.max(gt_in_mask)

            ax_enh0.imshow(depth_gt_masked,
                           cmap='jet',
                           vmin=vmin_s,
                           vmax=vmax_s)
            ax_enh1.imshow(depth_gap * mask,
                           cmap='jet',
                           vmin=vmin_s,
                           vmax=vmax_s)
            ax_enh2.imshow(predict_masked,
                           cmap='jet',
                           vmin=vmin_s,
                           vmax=vmax_s)

            ax_enh0.set_title('Ground Truth')
            ax_enh1.set_title('Low-res')
            ax_enh2.set_title('Ours')

            # misc
            ax_misc0.imshow(shading_bgr[:, :, ::-1])
            # ax_misc0.imshow(np.dstack([shading_gray, shading_gray, shading_gray]))

            # shading_norm_img = (shading[:, :] * 64 + 128)
            # shading_norm_img = np.where(shading_norm_img < 0, 0, shading_norm_img).astype(np.uint8)
            # ax_misc0.imshow(np.dstack([shading_norm_img, shading_norm_img, shading_norm_img]))

            # error
            is_scale_err_mm = True
            if is_scale_err_mm:
                scale_err = 1000
            else:
                scale_err = 1

            vmin_e, vmax_e = 0, vm_e_range * scale_err
            ax_err_gap.imshow(depth_err * mask * scale_err,
                              cmap='jet',
                              vmin=vmin_e,
                              vmax=vmax_e)
            ax_err_pred.imshow(predict_err_masked * scale_err,
                               cmap='jet',
                               vmin=vmin_e,
                               vmax=vmax_e)

            # vmin_e, vmax_e = -1 * vm_e_range * scale_err, vm_e_range * scale_err
            # # ax_err_gap.imshow(depth_err * mask * scale_err, cmap='coolwarm', vmin=vmin_e, vmax=vmax_e)
            # # ax_err_pred.imshow(predict_err_masked * scale_err, cmap='coolwarm', vmin=vmin_e, vmax=vmax_e)
            # ax_err_gap.imshow(depth_err * mask * scale_err, cmap='jet', vmin=vmin_e, vmax=vmax_e)
            # ax_err_pred.imshow(predict_err_masked * scale_err, cmap='jet', vmin=vmin_e, vmax=vmax_e)

            # title
            # ax_enh0.set_title('Groud Truth')
            # ax_enh1.set_title('Input Depth')
            # ax_enh2.set_title('Predict')
            # ax_err_gap.set_title('')
            # ax_err_pred.set_title('')

            # colorbar
            plt.tight_layout()
            fig.savefig(io.BytesIO())
            cb_offset = -0.05

            plt.colorbar(ScalarMappable(colors.Normalize(vmin=vmin_s,
                                                         vmax=vmax_s),
                                        cmap='jet'),
                         cax=ax_cb0)
            im_pos, cb_pos = ax_enh2.get_position(), ax_cb1.get_position()
            ax_cb0.set_position([
                cb_pos.x0 + cb_offset, im_pos.y0, cb_pos.x1 - cb_pos.x0,
                im_pos.y1 - im_pos.y0
            ])
            ax_cb0.set_xlabel('                [m]')

            plt.colorbar(ScalarMappable(colors.Normalize(vmin=vmin_e,
                                                         vmax=vmax_e),
                                        cmap='jet'),
                         cax=ax_cb1)
            # plt.colorbar(ScalarMappable(colors.Normalize(vmin=vmin_e, vmax=vmax_e),
            #                             cmap='coolwarm'),
            #             cax=ax_cb1)
            im_pos, cb_pos = ax_err_pred.get_position(), ax_cb1.get_position()
            ax_cb1.set_position([
                cb_pos.x0 + cb_offset, im_pos.y0, cb_pos.x1 - cb_pos.x0,
                im_pos.y1 - im_pos.y0
            ])
            if is_scale_err_mm:
                ax_cb1.set_xlabel('                [mm]')
            else:
                ax_cb1.set_xlabel('                [m]')

            plt.savefig(predict_dir + '/result-{:03d}.png'.format(test_idx),
                        dpi=300)
            # plt.savefig(predict_dir + '/result-dif-{:03d}.png'.format(test_idx), dpi=300)
            # plt.savefig(predict_dir + '/result-dif-{:03d}.jpg'.format(test_idx), dpi=300)
            # plt.savefig(predict_dir + '/result-{:03d}.pdf'.format(test_idx), dpi=300)
            plt.close()

    with open(predict_dir + '/error_compare.txt', mode='w') as f:
        f.write(err_strings)

    compare_error.compare_error(predict_dir + '/')
Beispiel #4
0
def main():
    x_data, y_data, depth_thre = prepare_data(data_idx_range)
    # print('x train data:', x_data.shape)
    # print('y train data:', y_data.shape)

    # x_train  = x_data[0: train_num]
    # x_val = x_data[train_num: data_num]
    # y_train = y_data[0: train_num]
    # y_val = y_data[train_num: data_num]

    if is_input_depth:
        if is_input_frame:
            ch_num = 3
        else:
            ch_num = 2
    else:
        if is_input_frame:
            ch_num = 2
        else:
            ch_num = 1

    # model configuration
    if net_type is '0':
        model = network.build_unet_model(batch_shape, ch_num)
    elif net_type is '1':
        model = network.build_resnet_model(batch_shape, ch_num)

    loss_str = 'epoch,loss,val_loss\n'

    # for epoch in tqdm(range(1, epoch_num + 1)):
    for epoch in tqdm(range(epoch_num, epoch_num + 1)):
        model.load_weights(out_dir + '/model/model-%03d.hdf5' % epoch)
        loss_str += str(epoch) + ','

        # Train Loss
        list_err = []
        list_length = []
        for idx in train_range:
            # x = x_data[idx]
            x = x_data[idx].reshape((1, 1200, 1200, 3))
            y = y_data[idx]

            predict = model.predict(x, batch_size=1)
            decode_img = predict[0][:, :, 0:2]

            pred_diff = decode_img[:, :, 0].copy()
            gt = y[:, :, 0]
            mask = y[:, :, 1]

            mask_length = np.sum(mask)
            err = np.sum(np.square(gt - pred_diff) * mask)

            list_err.append(err)
            list_length.append(mask_length)

        mse = np.sum(list_err) / np.sum(list_length)
        # rmse = np.sqrt(mse)

        loss_str += str(mse) + ','

        # Val Loss
        list_err = []
        list_length = []
        for idx in val_range:
            # x = x_data[idx]
            x = x_data[idx].reshape((1, 1200, 1200, 3))
            y = y_data[idx]

            predict = model.predict(x, batch_size=1)
            decode_img = predict[0][:, :, 0:2]

            pred_diff = decode_img[:, :, 0].copy()
            gt = y[:, :, 0]
            mask = y[:, :, 1]

            mask_length = np.sum(mask)
            err = np.sum(np.square(gt - pred_diff) * mask)

            list_err.append(err)
            list_length.append(mask_length)

        mse = np.sum(list_err) / np.sum(list_length)
        # rmse = np.sqrt(mse)

        loss_str += str(mse) + '\n'

    with open(out_dir + '/loss.txt', mode='w') as f:
        f.write(loss_str)
Beispiel #5
0
def main():
    x_data, y_data, depth_thre = prepare_data(data_idx_range)
    print('x train data:', x_data.shape)
    print('y train data:', y_data.shape)

    if is_augment:
        x_train, x_val, y_train, y_val = train_test_split(x_data,
                                                          y_data,
                                                          test_size=val_rate)
    else:
        x_train, y_train = x_data, y_data

    # check training data
    print('x_train length:', len(x_train))

    if is_augment:
        print('x_val length  :', len(x_val))
        print('data augmentation')
        x_datagen.fit(x_train, augment=True, seed=seed_train)
        y_datagen.fit(y_train, augment=True, seed=seed_train)
        x_val_datagen.fit(x_val, augment=True, seed=seed_val)
        y_val_datagen.fit(y_val, augment=True, seed=seed_val)

        x_generator = x_datagen.flow(x_train,
                                     batch_size=train_batch_size,
                                     seed=seed_train)
        y_generator = y_datagen.flow(y_train,
                                     batch_size=train_batch_size,
                                     seed=seed_train)
        x_val_generator = x_val_datagen.flow(x_val,
                                             batch_size=train_batch_size,
                                             seed=seed_val)
        y_val_generator = y_val_datagen.flow(y_val,
                                             batch_size=train_batch_size,
                                             seed=seed_val)

        train_generator = zip(x_generator, y_generator)
        val_generator = zip(x_val_generator, y_val_generator)
        print('generator created')

    if is_input_depth:
        if is_input_frame:
            ch_num = 3
        else:
            ch_num = 2
    else:
        if is_input_frame:
            ch_num = 2
        else:
            ch_num = 1

    # model configuration
    if net_type is '0':
        model = network.build_unet_model(
            batch_shape,
            ch_num,
            depth_threshold=depth_thre,
            difference_threshold=difference_threshold,
            # decay=decay,
            drop_rate=dropout_rate,
            # scaling=difference_scaling
        )
    elif net_type is '1':
        model = network.build_resnet_model(
            batch_shape,
            ch_num,
            depth_threshold=depth_thre,
            difference_threshold=difference_threshold,
            drop_rate=dropout_rate,
            scaling=difference_scaling)
    elif net_type is '2':
        model = network.build_dense_resnet_model(
            batch_shape,
            ch_num,
            depth_threshold=depth_thre,
            difference_threshold=difference_threshold,
            drop_rate=dropout_rate)

    # resume
    model_dir = out_dir + '/model'
    initial_epoch = 0
    if resume_from is None:
        initial_epoch = 0

    elif resume_from == 'auto':

        def extract_epoch_num(filename):
            return int(re.search(r'model-([0-9]+)\.hdf5', filename).group(1))

        model_files = glob(model_dir + '/model-*.hdf5')
        model_file = sorted(model_files, key=extract_epoch_num)[-1]
        initial_epoch = extract_epoch_num(model_file)
        print('resume from ', model_file, ', epoch number', initial_epoch)

    else:
        # model_file, initial_epoch = resume_from
        initial_epoch = resume_from
        model_file = model_dir + '/model-best.hdf5'
        # model_file = model_dir + '/model-final.hdf5'
        # print('resume from ', model_file, ', epoch number', initial_epoch)

    if resume_from is not None:
        model.load_weights(model_file)

    # make output dirs
    if is_model_exist is '0':
        os.makedirs(out_dir)
        os.makedirs(model_dir)

    # train
    model_save_cb = ModelCheckpoint(
        model_dir + '/model-best.hdf5',
        # model_dir + '/model-{epoch:03d}.hdf5',
        monitor=monitor_loss,
        verbose=verbose,
        save_best_only=True,
        save_weights_only=True,
        mode='min',
        period=1)
    # model_save_cb = ModelCheckpoint(model_dir + '/model-{epoch:03d}.hdf5',
    #                                 period=save_period,
    #                                 save_weights_only=True)
    csv_logger_cb = CSVLogger(out_dir + '/training.log',
                              append=(resume_from is not None))

    print('training')
    if is_augment:
        model.fit_generator(
            train_generator,
            steps_per_epoch=len(x_train) * augment_rate / train_batch_size + 1,
            epochs=epoch_num,
            initial_epoch=initial_epoch,
            shuffle=True,
            callbacks=[model_save_cb, csv_logger_cb],
            validation_data=val_generator,
            validation_steps=len(x_val) * augment_rate / train_batch_size + 1,
            verbose=verbose)
    else:
        model.fit(x_train,
                  y_train,
                  epochs=epoch_num,
                  batch_size=train_batch_size,
                  initial_epoch=initial_epoch,
                  shuffle=True,
                  validation_split=val_rate,
                  callbacks=[model_save_cb, csv_logger_cb],
                  verbose=verbose)

    model.save_weights(model_dir + '/model-final.hdf5')
import network

batch_shape = (120, 120)
ch_num = 3

model = network.build_unet_model(batch_shape, ch_num, transfer_learn=True)

# for l in model.layers[:38]:
#     l.trainable = False

# model.compile(optimizer='adam',
#                 metrics=['accuracy'],
#                 loss=model.mean_squared_error_difference_learn)

# model.summary()

for l in model.layers:
    print(l.name, l.trainable)
Beispiel #7
0
def main():
    if is_model_exist is '0':
        os.makedirs(out_dir)

    if use_generator:
        # patch_dir = '../data/patch_wave1'
        # train_generator = BatchGenerator(patch_dir + '/train', 66)
        # val_generator = BatchGenerator(patch_dir + '/val', 29)

        # patch_dir = '../data/patch_wave2_1000'
        # train_generator = BatchGenerator(patch_dir + '/train', 328)
        # val_generator = BatchGenerator(patch_dir + '/val', 144)

        # patch_dir = '../data/patch_wave2_2000'
        # train_generator = BatchGenerator(patch_dir + '/train', 656)
        # val_generator = BatchGenerator(patch_dir + '/val', 289)

        # wave1
        #100
        patch_dir = '../data/batch_wave1_100'
        train_generator = MiniBatchGenerator(patch_dir + '/train', 46, 70)
        val_generator = MiniBatchGenerator(patch_dir + '/val', 20, 30)
        #400
        # patch_dir = '../data/batch_wave1_400'
        # train_generator = MiniBatchGenerator(patch_dir + '/train', 197, 70)
        # val_generator = MiniBatchGenerator(patch_dir + '/val', 80, 30)

        # wave1-double
        # 200
        # patch_dir = '../data/batch_wave1-double_200'
        # train_generator = MiniBatchGenerator(patch_dir + '/train', 94, 70)
        # val_generator = MiniBatchGenerator(patch_dir + '/val', 40, 30)
        # 800
        # patch_dir = '../data/batch_wave1-double_800'
        # train_generator = MiniBatchGenerator(patch_dir + '/train', 395, 70)
        # val_generator = MiniBatchGenerator(patch_dir + '/val', 168, 30)

    else:
        x_data, y_data = prepare_data(data_idx_range)
        print('x train data:', x_data.shape)
        print('y train data:', y_data.shape)
        if is_augment:
            if is_transfer_learning or is_finetune or is_transfer_encoder:
                x_train, x_val, y_train, y_val = train_test_split(
                    x_data, y_data, test_size=val_rate, shuffle=True)
            else:
                # x_train, x_val, y_train, y_val = train_test_split(x_data, y_data,
                #                                                 test_size=val_rate, shuffle=False)
                x_train, x_val, y_train, y_val = train_test_split(
                    x_data, y_data, test_size=val_rate, shuffle=True)
        else:
            x_train, y_train = x_data, y_data

        # check training data
        print('x_train length:', len(x_train))

    if is_augment:
        print('x_val length  :', len(x_val))
        print('data augmentation')
        x_datagen.fit(x_train, augment=True, seed=seed_train)
        y_datagen.fit(y_train, augment=True, seed=seed_train)
        x_val_datagen.fit(x_val, augment=True, seed=seed_val)
        y_val_datagen.fit(y_val, augment=True, seed=seed_val)

        x_generator = x_datagen.flow(x_train,
                                     batch_size=train_batch_size,
                                     seed=seed_train)
        y_generator = y_datagen.flow(y_train,
                                     batch_size=train_batch_size,
                                     seed=seed_train)
        x_val_generator = x_val_datagen.flow(x_val,
                                             batch_size=train_batch_size,
                                             seed=seed_val)
        y_val_generator = y_val_datagen.flow(y_val,
                                             batch_size=train_batch_size,
                                             seed=seed_val)

        train_generator = zip(x_generator, y_generator)
        val_generator = zip(x_val_generator, y_val_generator)
        print('generator created')

    if is_input_depth:
        if is_input_frame:
            ch_num = 3
            if is_input_coord:
                ch_num = 5
        else:
            ch_num = 2
    else:
        if is_input_frame:
            ch_num = 2
        else:
            ch_num = 1

    # model configuration
    if net_type is '0':
        model = network.build_unet_model(
            batch_shape,
            ch_num,
            # decay=decay,
            drop_rate=dropout_rate,
            transfer_learn=is_transfer_learning,
            transfer_encoder=is_transfer_encoder,
            lr=learning_rate,
            scaling=difference_scaling)
    elif net_type is '1':
        model = network.build_resnet_model(
            batch_shape,
            ch_num,
            depth_threshold=depth_threshold,
            difference_threshold=difference_threshold,
            drop_rate=dropout_rate,
            scaling=difference_scaling)
    elif net_type is '2':
        model = network.build_dense_resnet_model(
            batch_shape,
            ch_num,
            depth_threshold=depth_threshold,
            difference_threshold=difference_threshold,
            drop_rate=dropout_rate)

    # resume
    model_dir = out_dir + '/model'
    initial_epoch = 0
    if resume_from is None:
        initial_epoch = 0

    elif resume_from == 'auto':

        def extract_epoch_num(filename):
            return int(re.search(r'model-([0-9]+)\.hdf5', filename).group(1))

        model_files = glob(model_dir + '/model-*.hdf5')
        model_file = sorted(model_files, key=extract_epoch_num)[-1]
        initial_epoch = extract_epoch_num(model_file)
        print('resume from ', model_file, ', epoch number', initial_epoch)

    elif resume_from == 'from_min':
        model_file = model_dir + '/model-%03d.hdf5' % idx_min_loss
        initial_epoch = pre_epoch

    else:
        # model_file, initial_epoch = resume_from
        initial_epoch = resume_from
        # model_file = model_dir + '/model-best.hdf5'
        model_file = model_dir + '/model-final.hdf5'
        # print('resume from ', model_file, ', epoch number', initial_epoch)

    if resume_from is not None:
        model.load_weights(model_file)

    # make output dirs
    if is_model_exist is '0':
        # os.makedirs(out_dir, exist_ok=True)
        # os.makedirs(model_dir, exist_ok=True)
        # os.makedirs(out_dir)
        os.makedirs(model_dir)

    # train
    # model_save_cb = ModelCheckpoint(model_dir + '/model-best.hdf5',
    #                                 # model_dir + '/model-{epoch:03d}.hdf5',
    #                                 monitor=monitor_loss,
    #                                 verbose=verbose,
    #                                 save_best_only=True,
    #                                 save_weights_only=True,
    #                                 mode='min',
    #                                 period=1)
    model_save_cb = ModelCheckpoint(model_dir + '/model-{epoch:03d}.hdf5',
                                    period=save_period,
                                    save_weights_only=True)
    csv_logger_cb = CSVLogger(out_dir + '/training.log',
                              append=(resume_from is not None))
    reduce_lr = ReduceLROnPlateau(monitor='val_loss',
                                  factor=0.5,
                                  patience=10,
                                  verbose=1)

    print('training')
    if use_generator:
        model.fit_generator(train_generator,
                            steps_per_epoch=train_generator.batches_per_epoch,
                            epochs=epoch_num,
                            initial_epoch=initial_epoch,
                            shuffle=True,
                            callbacks=[model_save_cb, csv_logger_cb],
                            validation_data=val_generator,
                            validation_steps=val_generator.batches_per_epoch,
                            verbose=verbose,
                            max_queue_size=2)
    else:
        if is_augment:
            model.fit_generator(
                train_generator,
                steps_per_epoch=len(x_train) * augment_rate / train_batch_size
                + 1,
                epochs=epoch_num,
                initial_epoch=initial_epoch,
                shuffle=True,
                callbacks=[model_save_cb, csv_logger_cb],
                # callbacks=[model_save_cb, csv_logger_cb, reduce_lr],
                validation_data=val_generator,
                validation_steps=len(x_val) * augment_val_rate /
                train_batch_size + 1,
                verbose=verbose)
        else:
            model.fit(x_train,
                      y_train,
                      epochs=epoch_num,
                      batch_size=train_batch_size,
                      initial_epoch=initial_epoch,
                      shuffle=True,
                      validation_split=val_rate,
                      callbacks=[model_save_cb, csv_logger_cb],
                      verbose=verbose)

    model.save_weights(out_dir + '/model-final.hdf5')
Beispiel #8
0
def main():
    if data_type is '0':
        src_rec_dir = src_dir + '/rec'
        src_rec_dir = src_dir + '/rec_ajusted'
        src_frame_dir = src_dir + '/frame'
        src_gt_dir = src_dir + '/gt'
        src_shading_dir = src_dir + '/shading'
    elif data_type is '1':
        src_frame_dir = src_dir + '/proj'
        src_gt_dir = src_dir + '/gt'
        src_shading_dir = src_dir + '/shade'
        src_rec_dir = src_dir + '/rec'
    elif data_type is '2':
        src_frame_dir = src_dir + '/proj'
        src_gt_dir = src_dir + '/gt'
        src_shading_dir = src_dir + '/shade'
        src_rec_dir = src_dir + '/rec'

    if is_input_depth:
        if is_input_frame:
            ch_num = 3
        else:
            ch_num = 2
    else:
        if is_input_frame:
            ch_num = 2
        else:
            ch_num = 1

    # model configuration
    if net_type is '0':
        model = network.build_unet_model(batch_shape, ch_num)
    elif net_type is '1':
        model = network.build_resnet_model(batch_shape, ch_num)
    elif net_type is '2':
        model = network.build_dense_resnet_model(batch_shape, ch_num)

    # log
    df_log = pd.read_csv(out_dir + '/training.log')
    if is_select_val:
        df = df_log['val_loss']
    else:
        df = df_log['loss']

    df.index = df.index + 1
    # select minimum loss model
    is_select_min_loss_model = True
    is_select_min_loss_model = False
    if is_select_min_loss_model:
        df_select = df[df.index > epoch_num - select_range]
        df_select = df_select[df_select.index <= epoch_num]
        df_select = df_select[df_select.index % save_period == 0]
        min_loss = df_select.min()
        idx_min_loss = df_select.idxmin()
        model.load_weights(out_dir + '/model/model-%03d.hdf5' % idx_min_loss)
        # model.load_weights(out_dir + '/model/model-best.hdf5')
    else:
        model.load_weights(out_dir + '/model-final.hdf5')

    # loss graph
    lossgraph_dir = predict_dir + '/loss_graph'
    os.makedirs(lossgraph_dir, exist_ok=True)
    arr_loss = df.values
    arr_epoch = df.index
    if is_select_val:
        init_epochs = [0, 10, int(epoch_num / 2), epoch_num - 200]
    else:
        init_epochs = [0, 10, epoch_num - 200, epoch_num - 100]

    for init_epo in init_epochs:
        if init_epo < 0:
            continue
        if init_epo >= epoch_num:
            continue
        plt.figure()
        plt.plot(arr_epoch[init_epo:epoch_num], arr_loss[init_epo:epoch_num])
        if is_select_min_loss_model:
            plt.plot(idx_min_loss, min_loss, 'ro')
        plt.xlabel('epoch')
        plt.ylabel('loss')
        plt.title('{} : epoch {} - {}'.format(df.name, init_epo + 1,
                                              epoch_num))
        plt.savefig(lossgraph_dir +
                    '/loss_{}-{}.pdf'.format(init_epo + 1, epoch_num))

    # error compare txt
    err_strings = 'index,type,MAE depth,MAE predict,RMSE depth,RMSE predict\n'

    os.makedirs(predict_dir, exist_ok=True)
    for test_idx in tqdm(data_idx_range):
        if data_type is '0':
            src_bgra = src_frame_dir + '/frame{:03d}.png'.format(test_idx)
            # src_depth_gap = src_rec_dir + '/depth{:03d}.png'.format(test_idx)
            src_depth_gap = src_rec_dir + '/depth{:03d}.bmp'.format(test_idx)
            src_depth_gt = src_gt_dir + '/gt{:03d}.bmp'.format(test_idx)
            # src_shading = src_shading_dir + '/shading{:03d}.png'.format(test_idx)
            src_shading = src_shading_dir + '/shading{:03d}.bmp'.format(
                test_idx)
        elif data_type is '1':
            src_bgra = src_frame_dir + '/{:05d}.png'.format(test_idx)
            src_depth_gt = src_gt_dir + '/{:05d}.bmp'.format(test_idx)
            src_shading = src_shading_dir + '/{:05d}.png'.format(test_idx)
            src_depth_gap = src_rec_dir + '/{:05d}.bmp'.format(test_idx)
        elif data_type is '2':
            src_bgra = src_frame_dir + '/{:05d}.png'.format(test_idx)
            src_depth_gt = src_gt_dir + '/{:05d}.bmp'.format(test_idx)
            src_shading = src_shading_dir + '/{:05d}.bmp'.format(test_idx)
            src_depth_gap = src_rec_dir + '/{:05d}.bmp'.format(test_idx)

        # read images
        bgr = cv2.imread(src_bgra, -1) / 255.
        bgr = bgr[:1200, :1200, :]
        depth_img_gap = cv2.imread(src_depth_gap, -1)
        depth_img_gap = depth_img_gap[:1200, :1200, :]
        # depth_gap = depth_tools.unpack_png_to_float(depth_img_gap)
        depth_gap = depth_tools.unpack_bmp_bgra_to_float(depth_img_gap)

        depth_img_gt = cv2.imread(src_depth_gt, -1)
        depth_img_gt = depth_img_gt[:1200, :1200, :]
        depth_gt = depth_tools.unpack_bmp_bgra_to_float(depth_img_gt)
        img_shape = bgr.shape[:2]

        # shading_bgr = cv2.imread(src_shading, -1)
        shading_bgr = cv2.imread(src_shading, 1)
        shading_bgr = shading_bgr[:1200, :1200, :]
        shading_gray = cv2.imread(src_shading, 0)  # GrayScale
        shading_gray = shading_gray[:1200, :1200]
        shading = shading_gray

        is_shading_available = shading > 0
        mask_shading = is_shading_available * 1.0
        # depth_gap = depth_gt[:, :] * mask_shading
        # mean_depth = np.sum(depth_gap) / np.sum(mask_shading)
        # depth_gap = mean_depth * mask_shading
        depth_gap *= mask_shading

        if is_shading_norm:  # shading norm : mean 0, var 1
            is_shading_available = shading > 16.0
            mask_shading = is_shading_available * 1.0
            mean_shading = np.sum(
                shading * mask_shading) / np.sum(mask_shading)
            var_shading = np.sum(
                np.square((shading - mean_shading) *
                          mask_shading)) / np.sum(mask_shading)
            std_shading = np.sqrt(var_shading)
            shading = (shading - mean_shading) / std_shading
        else:
            shading = shading / 255.

        # is_depth_available = depth_gt > depth_threshold
        # mask_depth = is_depth_available * 1.0
        # depth_gap = np.zeros_like(depth_gt)
        # mean_depth = np.sum(depth_gt) / np.sum(mask_depth)
        # depth_gap = mean_depth * mask_depth

        # normalization (may not be needed)
        # norm_factor = depth_gap.max()
        # depth_gap /= norm_factor
        # depth_gt /= depth_gt.max()

        depth_thre = depth_threshold

        # merge bgr + depth_gap
        if is_input_frame:
            if is_input_depth:
                bgrd = np.dstack([shading[:, :], depth_gap, bgr[:, :, 0]])
            else:
                bgrd = np.dstack([shading[:, :], bgr[:, :, 0]])
        else:
            bgrd = np.dstack([shading[:, :], depth_gap])

        # clip batches
        b_top, b_left = batch_tl
        b_h, b_w = batch_shape
        top_coords = range(b_top, img_shape[0], b_h)
        left_coords = range(b_left, img_shape[1], b_w)

        # add training data
        x_test = []
        for top, left in product(top_coords, left_coords):

            def clip_batch(img, top_left, size):
                t, l, h, w = *top_left, *size
                return img[t:t + h, l:l + w]

            batch_test = clip_batch(bgrd, (top, left), batch_shape)

            if is_input_depth or is_input_frame:
                x_test.append(batch_test)
            else:
                x_test.append(batch_test[:, :, 0].reshape((*batch_shape, 1)))

        # predict
        x_test = np.array(x_test)[:]
        predict = model.predict(x_test, batch_size=1)  # w/o denormalization
        # predict = model.predict(
        #     x_test, batch_size=1) * norm_factor  # w/ denormalization
        # decode_img = np.hstack([
        #     np.vstack([predict[0], predict[2]]),
        #     np.vstack([predict[1], predict[3]])
        # ])[:, :, 0:2]
        decode_img = predict[0][:, :, 0:2]

        # training types
        is_gt_available = depth_gt > depth_thre
        is_gap_unavailable = depth_gap < depth_thre

        is_depth_close = np.logical_and(
            np.abs(depth_gap - depth_gt) < difference_threshold,
            is_gt_available)

        is_to_interpolate = np.logical_and(is_gt_available, is_gap_unavailable)
        train_segment = np.zeros(decode_img.shape[:2])
        train_segment[is_depth_close] = 1
        train_segment[is_to_interpolate] = 2

        # is_train_area = np.logical_or(is_depth_close, is_to_interpolate)

        # mask = is_gt_available * 1.0 # GT
        mask = is_depth_close * 1.0  # no-complement
        # mask = is_train_area * 1.0 # complement

        # delete mask edge
        edge_size = mask_edge_size
        mask_filter = np.zeros_like(mask)
        for edge in range(1, edge_size):
            edge_2 = edge * 2
            mask_filter[edge:b_h - edge,
                        edge:b_w - edge] = mask[:b_h - edge_2, edge:b_w - edge]
            mask *= mask_filter
            mask_filter[edge:b_h - edge,
                        edge:b_w - edge] = mask[edge:b_h - edge, edge_2:]
            mask *= mask_filter
            mask_filter[edge:b_h - edge,
                        edge:b_w - edge] = mask[edge_2:, edge:b_w - edge]
            mask *= mask_filter
            mask_filter[edge:b_h - edge,
                        edge:b_w - edge] = mask[edge:b_h - edge, :b_w - edge_2]
            mask *= mask_filter

            for i in range(2):
                for j in range(2):
                    mask_filter[edge * i:b_h - edge * (1 - i),
                                edge * j:b_w - edge *
                                (1 - j)] = mask[edge * (1 - i):b_h - edge * i,
                                                edge * (1 - j):b_h - edge * j]
                    mask *= mask_filter

        mask_gt = is_gt_available * 1.0

        mask_length = np.sum(mask)

        # cv2.imwrite(predict_dir + '/mask-{:05d}.png'.format(test_idx),
        #             (mask * 255).astype(np.uint8))

        predict_depth = decode_img[:, :, 0].copy()

        if is_pred_smooth:
            predict_depth = common_tools.gaussian_filter(
                predict_depth, 2, 0.002)

        depth_gt_masked = depth_gt * mask
        gt_diff = (depth_gt - depth_gap) * mask
        predict_masked = predict_depth * mask

        # scale
        predict_depth /= difference_scaling
        predict_masked /= difference_scaling

        # reverse predict
        if is_pred_reverse:
            # predict normalization
            if is_predict_norm:
                mean_gt = np.sum(gt_diff) / mask_length
                mean_predict = np.sum(predict_masked) / mask_length
                gt_diff -= mean_gt
                predict_depth -= mean_predict
                predict_depth *= -1.0  # reverse
                out_diff_R = predict_depth.copy()  # save diff
                sd_gt = np.sqrt(
                    np.sum(np.square((gt_diff) * mask)) / mask_length)
                sd_predict = np.sqrt(
                    np.sum(np.square((predict_depth) * mask)) / mask_length)
                predict_depth *= sd_gt / sd_predict
                predict_depth += mean_gt
                predict_masked = predict_depth * mask

            # difference learn
            predict_depth += depth_gap
            predict_masked += depth_gap * mask

            # ajust bias, calc error
            if is_pred_ajust:
                mean_gt_diff = np.sum(gt_diff) / mask_length
                mean_out_dif = np.sum(out_diff * mask) / mask_length
                bias_out_dif = mean_out_dif - mean_gt_diff
                out_diff_ajusted = out_diff - bias_out_dif

            # error
            depth_err_abs_R = np.abs(depth_gt - depth_gap)
            depth_err_sqr_R = np.square(depth_gt - depth_gap)
            if is_pred_ajust:
                predict_err_abs_R = np.abs(gt_diff - out_diff_ajusted)
                predict_err_sqr_R = np.square(gt_diff - out_diff_ajusted)
            else:
                predict_err_abs_R = np.abs(depth_gt - predict_depth)
                predict_err_sqr_R = np.square(depth_gt - predict_depth)

            # error image
            depth_err_R = depth_err_abs_R
            predict_err_R = predict_err_abs_R
            predict_err_masked_R = predict_err_R * mask
            # Mean Absolute Error
            predict_MAE_R = np.sum(predict_err_abs_R * mask) / mask_length
            depth_MAE_R = np.sum(depth_err_abs_R * mask) / mask_length
            # Mean Squared Error
            predict_MSE_R = np.sum(predict_err_sqr_R * mask) / mask_length
            depth_MSE_R = np.sum(depth_err_sqr_R * mask) / mask_length
            # Root Mean Square Error
            predict_RMSE_R = np.sqrt(predict_MSE_R)
            depth_RMSE_R = np.sqrt(depth_MSE_R)
            #################################################################

        predict_depth = decode_img[:, :, 0].copy()
        if is_pred_smooth:
            predict_depth = common_tools.gaussian_filter(
                predict_depth, 2, 0.002)
        depth_gt_masked = depth_gt * mask
        gt_diff = (depth_gt - depth_gap) * mask
        predict_masked = predict_depth * mask
        # scale
        predict_depth /= difference_scaling
        predict_masked /= difference_scaling
        # predict normalization
        if is_predict_norm:
            mean_gt = np.sum(gt_diff) / mask_length
            mean_predict = np.sum(predict_masked) / mask_length
            gt_diff -= mean_gt
            predict_depth -= mean_predict
            out_diff = predict_depth.copy()  # save diff
            sd_gt = np.sqrt(np.sum(np.square((gt_diff) * mask)) / mask_length)
            sd_predict = np.sqrt(
                np.sum(np.square((predict_depth) * mask)) / mask_length)
            predict_depth *= sd_gt / sd_predict
            predict_depth += mean_gt
            predict_masked = predict_depth * mask

        # difference learn
        predict_depth += depth_gap
        predict_masked += depth_gap * mask

        # ajust bias, calc error
        if is_pred_ajust:
            mean_gt_diff = np.sum(gt_diff) / mask_length
            mean_out_dif = np.sum(out_diff * mask) / mask_length
            bias_out_dif = mean_out_dif - mean_gt_diff
            out_diff_ajusted = out_diff - bias_out_dif

        # error
        depth_err_abs = np.abs(depth_gt - depth_gap)
        depth_err_sqr = np.square(depth_gt - depth_gap)
        if is_pred_ajust:
            predict_err_abs = np.abs(gt_diff - out_diff_ajusted)
            predict_err_sqr = np.square(gt_diff - out_diff_ajusted)
        else:
            predict_err_abs = np.abs(depth_gt - predict_depth)
            predict_err_sqr = np.square(depth_gt - predict_depth)

        # error image
        depth_err = depth_err_abs
        predict_err = predict_err_abs
        predict_err_masked = predict_err * mask
        # Mean Absolute Error
        predict_MAE = np.sum(predict_err_abs * mask) / mask_length
        depth_MAE = np.sum(depth_err_abs * mask) / mask_length
        # Mean Squared Error
        predict_MSE = np.sum(predict_err_sqr * mask) / mask_length
        depth_MSE = np.sum(depth_err_sqr * mask) / mask_length
        # Root Mean Square Error
        predict_RMSE = np.sqrt(predict_MSE)
        depth_RMSE = np.sqrt(depth_MSE)

        if is_pred_pix_reverse:
            if is_reverse_threshold:
                predict_err_abs = np.where(
                    np.logical_and(predict_err_abs > r_thre,
                                   predict_err_abs > predict_err_abs_R),
                    predict_err_abs_R, predict_err_abs)
                predict_err_sqr = np.where(
                    np.logical_and(predict_err_sqr > r_thre**2,
                                   predict_err_sqr > predict_err_sqr_R),
                    predict_err_sqr_R, predict_err_sqr)
            else:
                predict_err_abs = np.where(predict_err_abs < predict_err_abs_R,
                                           predict_err_abs, predict_err_abs_R)
                predict_err_sqr = np.where(predict_err_sqr < predict_err_sqr_R,
                                           predict_err_sqr, predict_err_sqr_R)
            predict_err = predict_err_abs
            predict_err_masked = predict_err * mask
            predict_MAE = np.sum(predict_err_abs * mask) / mask_length
            predict_MSE = np.sum(predict_err_sqr * mask) / mask_length
            predict_RMSE = np.sqrt(predict_MSE)
        elif is_pred_reverse:
            if predict_RMSE > predict_RMSE_R:
                depth_err = depth_err_R
                predict_err = predict_err_R
                predict_err_masked = predict_err_masked_R
                predict_MAE = predict_MAE_R
                depth_MAE = depth_MAE_R
                predict_MSE = predict_MSE_R
                depth_MSE = depth_MSE_R
                predict_RMSE = predict_RMSE_R
                depth_RMSE = depth_RMSE_R
                out_diff = out_diff_R

        # output difference
        if is_save_diff:
            net_out_dir = predict_dir + '/net_output/'
            os.makedirs(net_out_dir, exist_ok=True)
            if test_idx in save_img_range:
                np.save(net_out_dir + '{:05d}.npy'.format(test_idx), out_diff)
                out_diff_depth = out_diff + 1
                xyz_out_diff = depth_tools.convert_depth_to_coords(
                    out_diff_depth, cam_params)
                depth_tools.dump_ply(
                    net_out_dir + '{:05d}.ply'.format(test_idx),
                    xyz_out_diff.reshape(-1, 3).tolist())

        err_strings += str(test_idx)
        if test_idx in test_range:
            # if test_idx not in train_range:
            err_strings += ',test,'
        else:
            err_strings += ',train,'
        for string in [depth_MAE, predict_MAE, depth_RMSE, predict_RMSE]:
            err_strings += str(string) + ','
        err_strings.rstrip(',')
        err_strings = err_strings[:-1] + '\n'

        predict_loss = predict_MAE
        depth_loss = depth_MAE

        # save predicted depth
        if test_idx in save_img_range:
            predict_bmp = depth_tools.pack_float_to_bmp_bgra(predict_masked)
            cv2.imwrite(predict_dir + '/predict-{:03d}.bmp'.format(test_idx),
                        predict_bmp)

        # save ply
        if is_save_ply:
            if test_idx in save_ply_range:
                if is_masked_ply:
                    xyz_predict_masked = depth_tools.convert_depth_to_coords(
                        predict_masked, cam_params)
                    depth_tools.dump_ply(
                        predict_dir + '/predict_masked-%03d.ply' % test_idx,
                        xyz_predict_masked.reshape(-1, 3).tolist())
                else:
                    xyz_predict = depth_tools.convert_depth_to_coords(
                        predict_depth, cam_params)
                    depth_tools.dump_ply(
                        predict_dir + '/predict-%03d.ply' % test_idx,
                        xyz_predict.reshape(-1, 3).tolist())

        # save fig
        # if test_idx in test_range:
        if test_idx in save_img_range:
            # layout
            fig = plt.figure(figsize=(7, 4))
            gs_master = GridSpec(nrows=2,
                                 ncols=2,
                                 height_ratios=[1, 1],
                                 width_ratios=[3, 0.1])
            gs_1 = GridSpecFromSubplotSpec(nrows=1,
                                           ncols=3,
                                           subplot_spec=gs_master[0, 0],
                                           wspace=0.05,
                                           hspace=0)
            gs_2 = GridSpecFromSubplotSpec(nrows=1,
                                           ncols=3,
                                           subplot_spec=gs_master[1, 0],
                                           wspace=0.05,
                                           hspace=0)
            gs_3 = GridSpecFromSubplotSpec(nrows=2,
                                           ncols=1,
                                           subplot_spec=gs_master[0:1, 1])

            ax_enh0 = fig.add_subplot(gs_1[0, 0])
            ax_enh1 = fig.add_subplot(gs_1[0, 1])
            ax_enh2 = fig.add_subplot(gs_1[0, 2])

            ax_misc0 = fig.add_subplot(gs_2[0, 0])

            ax_err_gap = fig.add_subplot(gs_2[0, 1])
            ax_err_pred = fig.add_subplot(gs_2[0, 2])

            ax_cb0 = fig.add_subplot(gs_3[0, 0])
            ax_cb1 = fig.add_subplot(gs_3[1, 0])

            for ax in [
                    ax_enh0, ax_enh1, ax_enh2, ax_misc0, ax_err_gap,
                    ax_err_pred
            ]:
                ax.axis('off')

            # close up
            mean = np.sum(depth_gt_masked) / mask_length
            vmin_s, vmax_s = mean - vm_range, mean + vm_range

            ax_enh0.imshow(depth_gt_masked,
                           cmap='jet',
                           vmin=vmin_s,
                           vmax=vmax_s)
            ax_enh1.imshow(depth_gap * mask,
                           cmap='jet',
                           vmin=vmin_s,
                           vmax=vmax_s)
            ax_enh2.imshow(predict_masked,
                           cmap='jet',
                           vmin=vmin_s,
                           vmax=vmax_s)

            # misc
            # ax_misc0.imshow(shading_bgr[:, :, ::-1])
            ax_misc0.imshow(
                np.dstack([shading_gray, shading_gray, shading_gray]))

            # error
            vmin_e, vmax_e = 0, vm_e_range
            ax_err_gap.imshow(depth_err * mask,
                              cmap='jet',
                              vmin=vmin_e,
                              vmax=vmax_e)
            ax_err_pred.imshow(predict_err_masked,
                               cmap='jet',
                               vmin=vmin_e,
                               vmax=vmax_e)

            # title
            # ax_enh0.set_title('Groud Truth')
            # ax_enh1.set_title('Input Depth')
            # ax_enh2.set_title('Predict')
            # ax_err_gap.set_title('')
            # ax_err_pred.set_title('')

            # colorbar
            plt.tight_layout()
            fig.savefig(io.BytesIO())
            cb_offset = -0.05

            plt.colorbar(ScalarMappable(colors.Normalize(vmin=vmin_s,
                                                         vmax=vmax_s),
                                        cmap='jet'),
                         cax=ax_cb0)
            im_pos, cb_pos = ax_enh2.get_position(), ax_cb1.get_position()
            ax_cb0.set_position([
                cb_pos.x0 + cb_offset, im_pos.y0, cb_pos.x1 - cb_pos.x0,
                im_pos.y1 - im_pos.y0
            ])

            plt.colorbar(ScalarMappable(colors.Normalize(vmin=vmin_e,
                                                         vmax=vmax_e),
                                        cmap='jet'),
                         cax=ax_cb1)
            im_pos, cb_pos = ax_err_pred.get_position(), ax_cb1.get_position()
            ax_cb1.set_position([
                cb_pos.x0 + cb_offset, im_pos.y0, cb_pos.x1 - cb_pos.x0,
                im_pos.y1 - im_pos.y0
            ])

            plt.savefig(predict_dir + '/result-{:03d}.png'.format(test_idx),
                        dpi=300)
            plt.close()

    with open(predict_dir + '/error_compare.txt', mode='w') as f:
        f.write(err_strings)

    compare_error.compare_error(predict_dir + '/')
    compare_error.compare_error(predict_dir + '/', error='MAE')