def load_checkpoint(filename, dir=GOOGLE_COLAB_CHECKPOINT_DIR):
    checkpoint = torch.load(os.path.join(dir, filename))
    model = RNN(hidden_size=checkpoint['hidden_size'],
                output_size=checkpoint['output_size'],
                n_layers=checkpoint['n_layers'],
                batch_size=checkpoint['batch_size'],
                bidirectional=checkpoint['bidirectional'])
    model.load_state_dict(checkpoint['state_dict'])
    model.num_epochs_trained = checkpoint['num_epochs_trained']

    return model
Beispiel #2
0
import os

import dataset
from network import RNN

dataset = dataset.Dataset()

max_length = 20

rnn = RNN(dataset.n_letters, 128, dataset.n_letters, dataset.n_categories)
rnn.eval()

# load weights
if os.path.exists("models/gen_names.pkl"):
    checkpoint = torch.load("models/gen_names.pkl")
    rnn.load_state_dict(checkpoint['nn_state_dict'])
    print("checkpoint loaded")


def sample(category, start_char):
    with torch.no_grad():
        category_tensor_var = dataset.category_tensor(category)
        input = dataset.input_tensor(start_char)
        hidden = rnn.init_hidden()
        output_name = start_char

        for i in range(max_length):
            output, hidden = rnn(category_tensor_var, input[0], hidden)
            topv, topi = output.topk(1)
            topi = topi[0][0]
            if topi == dataset.n_letters - 1: