def double_fc_dropout(p0, p1, p2, repetitions):
    expanded_training_data, _, _ = network3_nbb.load_data_shared(
        "../data/mnist_expanded.pkl.gz")
    nets = []
    for j in range(repetitions):
        print "\n\nTraining using a dropout network with parameters ",p0,p1,p2
        print "Training with expanded data, run num %s" % j
        net = Network([
            ConvPoolLayer(image_shape=(mini_batch_size, 1, 28, 28), 
                          filter_shape=(20, 1, 5, 5), 
                          poolsize=(2, 2), 
                          activation_fn=ReLU),
            ConvPoolLayer(image_shape=(mini_batch_size, 20, 12, 12), 
                          filter_shape=(40, 20, 5, 5), 
                          poolsize=(2, 2), 
                          activation_fn=ReLU),
            FullyConnectedLayer(
                n_in=40*4*4, n_out=1000, activation_fn=ReLU, p_dropout=p0),
            FullyConnectedLayer(
                n_in=1000, n_out=1000, activation_fn=ReLU, p_dropout=p1),
            SoftmaxLayer(n_in=1000, n_out=10, p_dropout=p2)], mini_batch_size)
        net.SGD(expanded_training_data, 40, mini_batch_size, 0.03, 
                validation_data, test_data)
        nets.append(net)
    return nets
def regularized_dbl_conv():
    for lmbda in [0.00001, 0.0001, 0.001, 0.01, 0.1, 1.0, 10.0, 100.0]:
        for j in range(3):
            print "Conv + Conv + FC num %s, with regularization %s" % (j, lmbda)
            net = Network([
                ConvPoolLayer(image_shape=(mini_batch_size, 1, 28, 28), 
                              filter_shape=(20, 1, 5, 5), 
                              poolsize=(2, 2)),
                ConvPoolLayer(image_shape=(mini_batch_size, 20, 12, 12), 
                              filter_shape=(40, 20, 5, 5), 
                              poolsize=(2, 2)),
                FullyConnectedLayer(n_in=40*4*4, n_out=100),
                SoftmaxLayer(n_in=100, n_out=10)], mini_batch_size)
            net.SGD(training_data, 60, mini_batch_size, 0.1, validation_data, test_data, lmbda=lmbda)
def dbl_conv(activation_fn=sigmoid):
    for j in range(3):
        print "Conv + Conv + FC architecture"
        net = Network([
            ConvPoolLayer(image_shape=(mini_batch_size, 1, 28, 28), 
                          filter_shape=(20, 1, 5, 5), 
                          poolsize=(2, 2),
                          activation_fn=activation_fn),
            ConvPoolLayer(image_shape=(mini_batch_size, 20, 12, 12), 
                          filter_shape=(40, 20, 5, 5), 
                          poolsize=(2, 2),
                          activation_fn=activation_fn),
            FullyConnectedLayer(
                n_in=40*4*4, n_out=100, activation_fn=activation_fn),
            SoftmaxLayer(n_in=100, n_out=10)], mini_batch_size)
        net.SGD(training_data, 60, mini_batch_size, 0.1, validation_data, test_data)
    return net 
def omit_FC():
    for j in range(3):
        print "Conv only, no FC"
        net = Network([
            ConvPoolLayer(image_shape=(mini_batch_size, 1, 28, 28), 
                          filter_shape=(20, 1, 5, 5), 
                          poolsize=(2, 2)),
            SoftmaxLayer(n_in=20*12*12, n_out=10)], mini_batch_size)
        net.SGD(training_data, 60, mini_batch_size, 0.1, validation_data, test_data)
    return net 
def basic_conv(n=3, epochs=60):
    for j in range(n):
        print "Conv + FC architecture"
        net = Network([
            ConvPoolLayer(image_shape=(mini_batch_size, 1, 28, 28), 
                          filter_shape=(20, 1, 5, 5), 
                          poolsize=(2, 2)),
            FullyConnectedLayer(n_in=20*12*12, n_out=100),
            SoftmaxLayer(n_in=100, n_out=10)], mini_batch_size)
        net.SGD(
            training_data, epochs, mini_batch_size, 0.1, validation_data, test_data)
    return net 
def dbl_conv_relu(lmbda = 0.001, epochs=1):
    
    print lmbda
    print epochs

    #for lmbda in [0.0, 0.00001, 0.0001, 0.001, 0.01, 0.1, 1.0, 10.0, 100.0]:    
    for j in range(1):
        print "Conv + Conv + FC num %s, relu, with regularization %s" % (j, lmbda)
        net = Network([
            ConvPoolLayer(image_shape=(mini_batch_size, 1, 28, 28), 
                          filter_shape=(20, 1, 5, 5), 
                          poolsize=(2, 2), 
                          activation_fn=ReLU),
            ConvPoolLayer(image_shape=(mini_batch_size, 20, 12, 12), 
                          filter_shape=(40, 20, 5, 5), 
                          poolsize=(2, 2), 
                          activation_fn=ReLU),
            FullyConnectedLayer(n_in=40*4*4, n_out=100, activation_fn=ReLU),
            SoftmaxLayer(n_in=100, n_out=10)], mini_batch_size)
        acc_array = net.SGD(training_data, epochs, mini_batch_size, 0.03, validation_data, test_data, lmbda=lmbda)
    return [net, acc_array,lmbda,epochs]
def expanded_data_double_fc(n=100):
    """n is the number of neurons in both fully-connected layers.  We'll
    try n=100, 300, and 1000.

    """
    expanded_training_data, _, _ = network3_nbb.load_data_shared(
        "../data/mnist_expanded.pkl.gz")
    for j in range(3):
        print "Training with expanded data, %s neurons in two FC layers, run num %s" % (n, j)
        net = Network([
            ConvPoolLayer(image_shape=(mini_batch_size, 1, 28, 28), 
                          filter_shape=(20, 1, 5, 5), 
                          poolsize=(2, 2), 
                          activation_fn=ReLU),
            ConvPoolLayer(image_shape=(mini_batch_size, 20, 12, 12), 
                          filter_shape=(40, 20, 5, 5), 
                          poolsize=(2, 2), 
                          activation_fn=ReLU),
            FullyConnectedLayer(n_in=40*4*4, n_out=n, activation_fn=ReLU),
            FullyConnectedLayer(n_in=n, n_out=n, activation_fn=ReLU),
            SoftmaxLayer(n_in=n, n_out=10)], mini_batch_size)
        net.SGD(expanded_training_data, 60, mini_batch_size, 0.03, 
                validation_data, test_data, lmbda=0.1)