def infer(model_path, batch_size, test_data_file, vocab_file, target_file): def _infer_a_batch(inferer, test_data, id_2_word, id_2_label): probs = inferer.infer(input=test_data, field=["id"]) assert len(probs) == sum(len(x[0]) for x in test_data) for idx, test_sample in enumerate(test_data): start_id = 0 for w, tag in zip(test_sample[0], probs[start_id:start_id + len(test_sample[0])]): print("%s\t%s" % (id_2_word[w], id_2_label[tag])) print("\n") start_id += len(test_sample[0]) word_dict = load_dict(vocab_file) word_dict_len = len(word_dict) word_reverse_dict = load_reverse_dict(vocab_file) label_dict = load_dict(target_file) label_reverse_dict = load_reverse_dict(target_file) label_dict_len = len(label_dict) # initialize PaddlePaddle paddle.init(use_gpu=False, trainer_count=1) parameters = paddle.parameters.Parameters.from_tar( gzip.open(model_path, "r")) predict = ner_net(word_dict_len=word_dict_len, label_dict_len=label_dict_len, is_train=False) inferer = paddle.inference.Inference(output_layer=predict, parameters=parameters) test_data = [] for i, item in enumerate( reader.data_reader(test_data_file, word_dict, label_dict)()): test_data.append([item[0], item[1]]) if len(test_data) == batch_size: _infer_a_batch(inferer, test_data, word_reverse_dict, label_reverse_dict) test_data = [] _infer_a_batch(inferer, test_data, word_reverse_dict, label_reverse_dict) test_data = []
def main(train_data_file, test_data_file, vocab_file, target_file, emb_file, model_save_dir, num_passes, use_gpu, parallel): if not os.path.exists(model_save_dir): os.mkdir(model_save_dir) BATCH_SIZE = 200 word_dict = load_dict(vocab_file) label_dict = load_dict(target_file) word_vector_values = get_embedding(emb_file) word_dict_len = len(word_dict) label_dict_len = len(label_dict) avg_cost, feature_out, word, mark, target = ner_net( word_dict_len, label_dict_len, parallel) sgd_optimizer = fluid.optimizer.SGD(learning_rate=1e-3) sgd_optimizer.minimize(avg_cost) crf_decode = fluid.layers.crf_decoding( input=feature_out, param_attr=fluid.ParamAttr(name='crfw')) chunk_evaluator = fluid.evaluator.ChunkEvaluator( input=crf_decode, label=target, chunk_scheme="IOB", num_chunk_types=int(math.ceil((label_dict_len - 1) / 2.0))) inference_program = fluid.default_main_program().clone() with fluid.program_guard(inference_program): test_target = chunk_evaluator.metrics + chunk_evaluator.states inference_program = fluid.io.get_inference_program(test_target) train_reader = paddle.batch(paddle.reader.shuffle(reader.data_reader( train_data_file, word_dict, label_dict), buf_size=20000), batch_size=BATCH_SIZE) test_reader = paddle.batch(paddle.reader.shuffle(reader.data_reader( test_data_file, word_dict, label_dict), buf_size=20000), batch_size=BATCH_SIZE) place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace() feeder = fluid.DataFeeder(feed_list=[word, mark, target], place=place) exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) embedding_name = 'emb' embedding_param = fluid.global_scope().find_var( embedding_name).get_tensor() embedding_param.set(word_vector_values, place) batch_id = 0 total_time = 0.0 for pass_id in xrange(num_passes): chunk_evaluator.reset(exe) start_time = time.time() for data in train_reader(): cost, batch_precision, batch_recall, batch_f1_score = exe.run( fluid.default_main_program(), feed=feeder.feed(data), fetch_list=[avg_cost] + chunk_evaluator.metrics) batch_id = batch_id + 1 t1 = time.time() total_time += t1 - start_time pass_precision, pass_recall, pass_f1_score = chunk_evaluator.eval(exe) if pass_id == num_passes - 1: train_acc_kpi.add_record(pass_precision) pass_duration_kpi.add_record(total_time / num_passes) if pass_id % 100 == 0: print("[TrainSet] pass_id:" + str(pass_id) + " pass_precision:" + str(pass_precision) + " pass_recall:" + str(pass_recall) + " pass_f1_score:" + str(pass_f1_score)) pass_precision, pass_recall, pass_f1_score = test( exe, chunk_evaluator, inference_program, test_reader, place) if pass_id % 100 == 0: print("[TestSet] pass_id:" + str(pass_id) + " pass_precision:" + str(pass_precision) + " pass_recall:" + str(pass_recall) + " pass_f1_score:" + str(pass_f1_score)) save_dirname = os.path.join(model_save_dir, "params_pass_%d" % pass_id) fluid.io.save_inference_model(save_dirname, ['word', 'mark', 'target'], [crf_decode], exe) train_acc_kpi.persist() pass_duration_kpi.persist()
def main(train_data_file, test_data_file, vocab_file, target_file, emb_file, model_save_dir, num_passes=10, batch_size=32): if not os.path.exists(model_save_dir): os.mkdir(model_save_dir) word_dict = load_dict(vocab_file) label_dict = load_dict(target_file) word_vector_values = get_embedding(emb_file) word_dict_len = len(word_dict) label_dict_len = len(label_dict) paddle.init(use_gpu=False, trainer_count=1) # define network topology crf_cost, crf_dec, target = ner_net(word_dict_len, label_dict_len) evaluator.sum(name="error", input=crf_dec) evaluator.chunk( name="ner_chunk", input=crf_dec, label=target, chunk_scheme="IOB", num_chunk_types=(label_dict_len - 1) / 2) # create parameters parameters = paddle.parameters.create(crf_cost) parameters.set("emb", word_vector_values) # create optimizer optimizer = paddle.optimizer.Momentum( momentum=0, learning_rate=2e-4, regularization=paddle.optimizer.L2Regularization(rate=8e-4), gradient_clipping_threshold=25, model_average=paddle.optimizer.ModelAverage( average_window=0.5, max_average_window=10000), ) trainer = paddle.trainer.SGD( cost=crf_cost, parameters=parameters, update_equation=optimizer, extra_layers=crf_dec) train_reader = paddle.batch( paddle.reader.shuffle( reader.data_reader(train_data_file, word_dict, label_dict), buf_size=1000), batch_size=batch_size) test_reader = paddle.batch( paddle.reader.shuffle( reader.data_reader(test_data_file, word_dict, label_dict), buf_size=1000), batch_size=batch_size) feeding = {"word": 0, "mark": 1, "target": 2} def event_handler(event): if isinstance(event, paddle.event.EndIteration): if event.batch_id % 1 == 0: logger.info("Pass %d, Batch %d, Cost %f, %s" % ( event.pass_id, event.batch_id, event.cost, event.metrics)) if event.batch_id % 1 == 0: result = trainer.test(reader=test_reader, feeding=feeding) logger.info("\nTest with Pass %d, Batch %d, %s" % (event.pass_id, event.batch_id, result.metrics)) if isinstance(event, paddle.event.EndPass): # save parameters with gzip.open( os.path.join(model_save_dir, "params_pass_%d.tar.gz" % event.pass_id), "w") as f: parameters.to_tar(f) result = trainer.test(reader=test_reader, feeding=feeding) logger.info("\nTest with Pass %d, %s" % (event.pass_id, result.metrics)) trainer.train( reader=train_reader, event_handler=event_handler, num_passes=num_passes, feeding=feeding)
def main(train_data_file, test_data_file, vocab_file, target_file, emb_file, model_save_dir, num_passes, use_gpu, parallel): if not os.path.exists(model_save_dir): os.mkdir(model_save_dir) BATCH_SIZE = int(os.getenv("BATCH_SIZE", "200")) word_dict = load_dict(vocab_file) label_dict = load_dict(target_file) word_vector_values = get_embedding(emb_file) word_dict_len = len(word_dict) label_dict_len = len(label_dict) avg_cost, feature_out, word, mark, target = ner_net( word_dict_len, label_dict_len, parallel) sgd_optimizer = fluid.optimizer.SGD(learning_rate=1e-3 / BATCH_SIZE) optimize_ops, params_grads = sgd_optimizer.minimize(avg_cost) crf_decode = fluid.layers.crf_decoding( input=feature_out, param_attr=fluid.ParamAttr(name='crfw')) chunk_evaluator = fluid.evaluator.ChunkEvaluator( input=crf_decode, label=target, chunk_scheme="IOB", num_chunk_types=int(math.ceil((label_dict_len - 1) / 2.0))) inference_program = fluid.default_main_program().clone() with fluid.program_guard(inference_program): test_target = chunk_evaluator.metrics + chunk_evaluator.states inference_program = fluid.io.get_inference_program(test_target) train_reader = paddle.batch(paddle.reader.shuffle(reader.data_reader( train_data_file, word_dict, label_dict), buf_size=20000), batch_size=BATCH_SIZE) test_reader = paddle.batch(paddle.reader.shuffle(reader.data_reader( test_data_file, word_dict, label_dict), buf_size=20000), batch_size=BATCH_SIZE) place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace() feeder = fluid.DataFeeder(feed_list=[word, mark, target], place=place) exe = fluid.Executor(place) def train_loop(exe, trainer_prog, trainer_id=0, reader=train_reader): embedding_name = 'emb' embedding_param = fluid.global_scope().find_var( embedding_name).get_tensor() embedding_param.set(word_vector_values, place) batch_id = 0 for pass_id in xrange(num_passes): chunk_evaluator.reset(exe) start_time = time.time() with profiler.profiler( "CPU", 'total', profile_path="/usr/local/nvidia/lib64/tmp") as prof: for data in reader(): cost, batch_precision, batch_recall, batch_f1_score = exe.run( trainer_prog, feed=feeder.feed(data), fetch_list=[avg_cost] + chunk_evaluator.metrics) if batch_id % 5 == 0: print("Pass " + str(pass_id) + ", Batch " + str(batch_id) + ", Cost " + str(cost[0]) + ", Precision " + str(batch_precision[0]) + ", Recall " + str(batch_recall[0]) + ", F1_score" + str(batch_f1_score[0])) batch_id = batch_id + 1 pass_precision, pass_recall, pass_f1_score = chunk_evaluator.eval( exe) spent = time.time() - start_time print("pass_id: %d, precision: %f, recall: %f, f1: %f, spent: %f, speed: %f" % \ (pass_id, pass_precision, pass_recall, pass_f1_score, spent, 14987.0 / spent)) pass_precision, pass_recall, pass_f1_score = test( exe, chunk_evaluator, inference_program, test_reader, place) print("[TestSet] pass_id:" + str(pass_id) + " pass_precision:" + str(pass_precision) + " pass_recall:" + str(pass_recall) + " pass_f1_score:" + str(pass_f1_score)) # save_dirname = os.path.join(model_save_dir, # "params_pass_%d_trainer%d" % (pass_id, trainer_id)) # fluid.io.save_inference_model(save_dirname, ['word', 'mark', 'target'], # [crf_decode], exe) with open("/tmp/origin_prog", "w") as fn: fn.write(fluid.default_main_program().__str__()) if os.getenv("LOCAL") == "TRUE": exe.run(fluid.default_startup_program()) train_loop(exe, fluid.default_main_program()) else: pserver_ips = os.getenv( "PADDLE_INIT_PSERVERS") # all pserver endpoints eplist = [] port = os.getenv("PADDLE_INIT_PORT") for ip in pserver_ips.split(","): eplist.append(':'.join([ip, port])) pserver_endpoints = ",".join(eplist) trainers = int(os.getenv("TRAINERS")) # total trainer count trainer_id = int(os.getenv("PADDLE_INIT_TRAINER_ID", "0")) current_endpoint = os.getenv( "POD_IP") + ":" + port # current pserver endpoint training_role = os.getenv( "TRAINING_ROLE", "TRAINER") # get the training role: trainer/pserver t = fluid.DistributeTranspiler() t.transpile(optimize_ops, params_grads, trainer_id, pservers=pserver_endpoints, trainers=trainers) print("endpoints: %s, current: %s, trainers: %d, trainer_id: %d, role: %s" %\ (pserver_endpoints, current_endpoint, trainers, trainer_id, training_role)) if training_role == "PSERVER": if not current_endpoint: print("need env SERVER_ENDPOINT") exit(1) pserver_prog = t.get_pserver_program(current_endpoint) print("######## pserver prog #############") with open("/tmp/pserver_prog", "w") as f: f.write(pserver_prog.__str__()) print("######## pserver prog #############") pserver_startup = t.get_startup_program(current_endpoint, pserver_prog) with open("/tmp/pserver_startup", "w") as f: f.write(pserver_startup.__str__()) print("starting server side startup") exe.run(pserver_startup) print("starting parameter server...") exe.run(pserver_prog) elif training_role == "TRAINER": exe.run(fluid.default_startup_program()) trainer_prog = t.get_trainer_program() cluster_train_reader = paddle.batch(paddle.reader.shuffle( reader.cluster_data_reader(train_data_file, word_dict, label_dict, trainers, trainer_id), buf_size=20000), batch_size=BATCH_SIZE) print("######## trainer prog #############") with open("/tmp/trainer_prog", "w") as f: f.write(trainer_prog.__str__()) print("######## trainer prog #############") train_loop(exe, trainer_prog, trainer_id, cluster_train_reader) else: print("environment var TRAINER_ROLE should be TRAINER os PSERVER")
def main(train_data_file, test_data_file, vocab_file, target_file, emb_file, model_save_dir, num_passes, use_gpu, parallel, batch_size=200): if not os.path.exists(model_save_dir): os.mkdir(model_save_dir) word_dict = load_dict(vocab_file) label_dict = load_dict(target_file) word_vector_values = get_embedding(emb_file) word_dict_len = len(word_dict) label_dict_len = len(label_dict) if "CE_MODE_X" in os.environ: fluid.default_startup_program().random_seed = 110 avg_cost, feature_out, word, mark, target = ner_net( word_dict_len, label_dict_len, parallel) crf_decode = fluid.layers.crf_decoding( input=feature_out, param_attr=fluid.ParamAttr(name='crfw')) (precision, recall, f1_score, num_infer_chunks, num_label_chunks, num_correct_chunks) = fluid.layers.chunk_eval( input=crf_decode, label=target, chunk_scheme="IOB", num_chunk_types=int(math.ceil((label_dict_len - 1) / 2.0))) chunk_evaluator = fluid.metrics.ChunkEvaluator() inference_program = fluid.default_main_program().clone(for_test=True) test_fetch_list = [num_infer_chunks, num_label_chunks, num_correct_chunks] sgd_optimizer = fluid.optimizer.SGD(learning_rate=1e-3) sgd_optimizer.minimize(avg_cost) if "CE_MODE_X" not in os.environ: train_reader = paddle.batch(paddle.reader.shuffle(reader.data_reader( train_data_file, word_dict, label_dict), buf_size=20000), batch_size=batch_size) test_reader = paddle.batch(paddle.reader.shuffle(reader.data_reader( test_data_file, word_dict, label_dict), buf_size=20000), batch_size=batch_size) else: train_reader = paddle.batch(reader.data_reader(train_data_file, word_dict, label_dict), batch_size=batch_size) test_reader = paddle.batch(reader.data_reader(test_data_file, word_dict, label_dict), batch_size=batch_size) place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace() feeder = fluid.DataFeeder(feed_list=[word, mark, target], place=place) exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) embedding_name = 'emb' embedding_param = fluid.global_scope().find_var( embedding_name).get_tensor() embedding_param.set(word_vector_values, place) time_begin = time.time() for pass_id in six.moves.xrange(num_passes): chunk_evaluator.reset() for batch_id, data in enumerate(train_reader()): cost_var, nums_infer, nums_label, nums_correct = exe.run( fluid.default_main_program(), feed=feeder.feed(data), fetch_list=[ avg_cost, num_infer_chunks, num_label_chunks, num_correct_chunks ]) if batch_id % 5 == 0: print("Pass " + str(pass_id) + ", Batch " + str(batch_id) + ", Cost " + str(cost_var[0])) chunk_evaluator.update(nums_infer, nums_label, nums_correct) pass_precision, pass_recall, pass_f1_score = chunk_evaluator.eval() print("[TrainSet] pass_id:" + str(pass_id) + " pass_precision:" + str(pass_precision) + " pass_recall:" + str(pass_recall) + " pass_f1_score:" + str(pass_f1_score)) test_pass_precision, test_pass_recall, test_pass_f1_score = test( exe, chunk_evaluator, inference_program, test_reader, test_fetch_list, place) print("[TestSet] pass_id:" + str(pass_id) + " pass_precision:" + str(test_pass_precision) + " pass_recall:" + str(test_pass_recall) + " pass_f1_score:" + str(test_pass_f1_score)) save_dirname = os.path.join(model_save_dir, "params_pass_%d" % pass_id) if "CE_MODE_X" not in os.environ: fluid.io.save_inference_model(save_dirname, ['word', 'mark'], crf_decode, exe) if "CE_MODE_X" in os.environ: print("kpis train_precision %f" % pass_precision) print("kpis test_precision %f" % test_pass_precision) print("kpis train_duration %f" % (time.time() - time_begin))