Beispiel #1
0

def formatit(X0, X1, Y0, Y1):
    w = list(range(int(np.ceil(X0)), int(X1) + 1))
    plt.xticks(w, [str(t) for t in w])

    w = list(range(int(np.ceil(Y0)), int(Y1) + 1))
    plt.yticks(w, [str(t) for t in w])


for ss in [0.5, 0.2, 0.5]:
    np.random.seed(int(sys.argv[-1]) + 10)
    sigma_x = np.eye(Ds[-1]) * ss
    for i in range(5):
        fig = plt.figure(figsize=(5, 5))
        model = networks.create_fns(BS, R, Ds, 0, var_x=np.ones(2) * ss**2)

        output, A, b, inequalities, signs = model['input2all'](np.random.randn(
            Ds[0]))

        regions = utils.search_region(model['signs2ineq'], model['signs2Ab'],
                                      signs)

        As = np.array([regions[s]['Ab'][0] for s in regions])
        Bs = np.array([regions[s]['Ab'][1] for s in regions])

        predictions = np.array([
            model['input2all'](np.random.randn(Ds[0]))[0] for z in range(200)
        ])

        noise = np.random.randn(*predictions.shape) * ss
Beispiel #2
0
        plt.imshow(predictions[i].reshape((8, 8)))
    for i in range(50):
        plt.subplot(10, 10, 51 + i)
        plt.imshow(DATA[i].reshape((8, 8)))





np.random.seed(int(sys.argv[-1]) + 10)

Ds = [1, 12, 64]
R, BS = 110, 150

sigma_x = .1
model = networks.create_fns(BS, R, Ds, 1, lr=0.001, leakiness=0.1, var_x=sigma_x**2)

DATA = datasets.load_digits(n_class=1).images
DATA = DATA[:BS].reshape((BS, -1)) + np.random.randn(BS, Ds[-1]) * 0.1
#DATA -= DATA.mean(1, keepdims=True)
DATA /= (DATA.max() * 10)
print(DATA)
L = []

for iter in tqdm(range(36)):

    plt_state()
    plt.savefig('samples_{}.png'.format(iter))
    plt.close()

    L.append(networks.EM(model, DATA, 1, 10, pretrain=iter==0, update_var=iter>5))
Beispiel #3
0
import sys
sys.path.insert(0, "../../SymJAX")
sys.path.insert(0, "../")
import numpy as np
import symjax as sj
import symjax.tensor as T
import utils
import networks
from tqdm import tqdm

error1, error2 = [], []
for Ds in [[1, 8, 8]]:
    print(Ds)
    model = networks.create_fns(1, 1, Ds, 0, var_x=np.ones(Ds[-1]))
    
    x = np.random.randn(Ds[0])/10
    output, A, b, inequalities, signs = model['input2all'](x)
    regions = utils.search_region(model['signs2ineq'], model['signs2Ab'],
                                  signs)
    print(len(regions))    
    K = 100
    xx = [np.linspace(-10, 10, K)] * Ds[0]
    xx = np.meshgrid(*xx)
    xx = np.vstack([x.flatten() for x in xx]).T
    
    yy = np.zeros((int(K ** Ds[0]), Ds[-1]))
    yy2 = np.zeros((int(K ** Ds[0]), Ds[-1]))

    
    As = np.array([regions[s]['Ab'][0] for s in regions])
    Bs = np.array([regions[s]['Ab'][1] for s in regions])
Beispiel #4
0
def plt_state():
    predictions = model['sample'](100)
    plt.figure(figsize=(30, 30))
    for i in range(50):
        plt.subplot(10, 10, 1 + i)
        plt.imshow(predictions[i].reshape((8, 8)))
    for i in range(50):
        plt.subplot(10, 10, 51 + i)
        plt.imshow(DATA[i].reshape((8, 8)))


np.random.seed(int(sys.argv[-1]) + 10)

Ds = [1, 20, 64]
R, BS = 110, 150
model = networks.create_fns(BS, R, Ds, 0, var_x=np.ones(Ds[-1]), lr=0.001)

DATA = datasets.load_digits(n_class=1).images
DATA = DATA[:BS].reshape((BS, -1))
DATA /= (0.1 + DATA.max(1, keepdims=True))
DATA -= DATA.mean(1, keepdims=True)
DATA += np.random.randn(BS, Ds[-1]) * 0.3

L = []
for iter in tqdm(range(16)):
    L.append(networks.EM(model, DATA, 100))
    plt_state()
    plt.savefig('samples_{}.png'.format(iter))
    plt.close()

    plt.figure()
Beispiel #5
0
if Ds[0] == 1:
    xx = np.linspace(-5, 5, 1500).reshape((-1, 1))
else:
    xx = np.meshgrid(np.linspace(-5, 5, 100), np.linspace(-3, 3, 100))
    xx = np.vstack([xx[0].flatten(), xx[1].flatten()]).T

ss = 0.1

for seed in [37, 146, 53, 187, 79]:
    np.random.seed(seed)
    for i in range(1):

        fig = plt.figure(figsize=(5, 5))
        model = networks.create_fns(BS,
                                    R,
                                    Ds,
                                    seed,
                                    var_x=np.ones(Ds[-1]) * ss**2,
                                    leakiness=0.01)

        z = np.random.randn(Ds[0])
        output, A, b, inequalities, signs = model['input2all'](z)
        outpute = output + np.random.randn(Ds[-1]) * ss

        regions = utils.search_region(model['signs2ineq'], model['signs2Ab'],
                                      signs)
        print(len(regions))

        As = np.array([regions[s]['Ab'][0] for s in regions])
        Bs = np.array([regions[s]['Ab'][1] for s in regions])

        predictions = model['sample'](20000)
Beispiel #6
0
elif args.network == 'large':
    Ds = [1, 8, 8, DATA.shape[1]]
    R = 64

elif args.network == 'xlarge':
    Ds = [1, 32, 32, DATA.shape[1]]
    R = 128

graph = sj.Graph('test')
with graph:
    if args.model != 'EM':
        lr = sj.tensor.Variable(1., name='lr', trainable=False)
        emt = networks.create_fns(BS,
                                  R,
                                  Ds,
                                  1,
                                  var_x=np.ones(Ds[-1]) * args.std**2,
                                  lr=0.005,
                                  leakiness=args.leakiness)
        model = networks.create_vae(50,
                                    Ds,
                                    args.seed,
                                    lr=lr,
                                    leakiness=args.leakiness,
                                    scaler=1)
    else:
        model = networks.create_fns(BS,
                                    R,
                                    Ds,
                                    1,
                                    lr=0.001,
Beispiel #7
0
parser.add_argument('--pretrain', type=int)
parser.add_argument('--seed', type=int)
args = parser.parse_args()

np.random.seed(args.seed)

Ds = [1, 12, 2]
R, BS = 64, 500

#if sys.argv[-1] == 'VAE':
#    model = networks.create_vae(BS, Ds, 1, lr=0.005, leakiness=0.1)
#else:
model = networks.create_fns(BS,
                            R,
                            Ds,
                            1,
                            lr=0.001,
                            leakiness=0.1,
                            var_x=args.std**2)

X = model['sample'](BS)
noise = np.random.randn(*X.shape) * np.sqrt(model['varx']())
plt.scatter(X[:, 0], X[:, 1])
plt.scatter(X[:, 0] + noise[:, 0], X[:, 1] + noise[:, 1])
plt.savefig('ori.png')
plt.close()

DATA = np.random.randn(BS, Ds[-1])
DATA /= np.linalg.norm(DATA, 2, 1, keepdims=True)

DATA = np.random.randn(BS) * 2