Beispiel #1
0
def main():
    # move the model to GPU
    net = VDN.VDNU(_C, wf=args.wf)
    # multi GPU setting
    net = nn.DataParallel(net).cuda()

    # optimizer
    optimizer = optim.Adam(net.parameters(), lr=args.lr)
    args.milestones = [10, 20, 25, 30, 35, 40, 45, 50]
    scheduler = optim.lr_scheduler.MultiStepLR(optimizer, args.milestones,
                                               args.gamma)

    if args.resume:
        if os.path.isfile(args.resume):
            print('=> Loading checkpoint {:s}'.format(args.resume))
            checkpoint = torch.load(args.resume)
            args.epoch_start = checkpoint['epoch']
            args.step = checkpoint['step']
            args.step_img = checkpoint['step_img']
            optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
            scheduler.load_state_dict(checkpoint['lr_scheduler_state_dict'])
            net.load_state_dict(checkpoint['model_state_dict'])
            args.clip_grad_D = checkpoint['grad_norm_D']
            args.clip_grad_S = checkpoint['grad_norm_S']
            print('=> Loaded checkpoint {:s} (epoch {:d})'.format(
                args.resume, checkpoint['epoch']))
        else:
            sys.exit('Please provide corrected model path!')
    else:
        net = VDN.weight_init_kaiming(net, args.activation)
        args.epoch_start = 0
        if os.path.isdir(args.log_dir):
            shutil.rmtree(args.log_dir)
        os.makedirs(args.log_dir)
        if os.path.isdir(args.model_dir):
            shutil.rmtree(args.model_dir)
        os.makedirs(args.model_dir)

    for arg in vars(args):
        print('{:<15s}: {:s}'.format(arg, str(getattr(args, arg))))

    # train dataset
    path_SIDD_train = os.path.join(args.SIDD_dir, 'small_imgs_train.hdf5')
    # test dataset
    path_SIDD_test = os.path.join(args.SIDD_dir, 'small_imgs_test.hdf5')
    datasets = {
        'train':
        DenoisingDatasets.BenchmarkTrain(path_SIDD_train,
                                         5000 * args.batch_size,
                                         args.patch_size,
                                         radius=args.radius,
                                         eps2=args.eps2,
                                         noise_estimate=True),
        'test_SIDD':
        DenoisingDatasets.BenchmarkTest(path_SIDD_test)
    }
    # train model
    print('\nBegin training with GPU: ' + str(args.gpu_id))
    train_model(net, datasets, optimizer, scheduler, loss_fn)
Beispiel #2
0
def main():
    # build the model
    net = VDN(_C, slope=args.slope, wf=args.wf, dep_U=args.depth)
    # move the model to GPU
    net = nn.DataParallel(net).cuda()

    # optimizer
    optimizer = optim.Adam(net.parameters(), lr=args.lr)
    args.milestones = [10, 20, 25, 30, 35, 40, 45, 50]
    scheduler = optim.lr_scheduler.MultiStepLR(optimizer, args.milestones, args.gamma)

    if args.resume:
        if os.path.isfile(args.resume):
            print('=> Loading checkpoint {:s}'.format(args.resume))
            checkpoint = torch.load(args.resume)
            args.epoch_start = checkpoint['epoch']
            args.step = checkpoint['step']
            args.step_img = checkpoint['step_img']
            optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
            scheduler.load_state_dict(checkpoint['lr_scheduler_state_dict'])
            net.load_state_dict(checkpoint['model_state_dict'])
            args.clip_grad_D = checkpoint['grad_norm_D']
            args.clip_grad_S = checkpoint['grad_norm_S']
            print('=> Loaded checkpoint {:s} (epoch {:d})'.format(args.resume, checkpoint['epoch']))
        else:
            sys.exit('Please provide corrected model path!')
    else:
        args.epoch_start = 0
        if os.path.isdir(args.log_dir):
            shutil.rmtree(args.log_dir)
        os.makedirs(args.log_dir)
        if os.path.isdir(args.model_dir):
            shutil.rmtree(args.model_dir)
        os.makedirs(args.model_dir)

    # print the arg pamameters
    for arg in vars(args):
        print('{:<15s}: {:s}'.format(arg,  str(getattr(args, arg))))

    # making traing data
    simulate_dir = Path(args.simulate_dir)
    train_im_list = list(simulate_dir.glob('*.jpg')) + list(simulate_dir.glob('*.png')) + \
                                                                    list(simulate_dir.glob('*.bmp'))
    train_im_list = sorted([str(x) for x in train_im_list])
    # making tesing data
    test_case1_h5 = Path('test_data').joinpath('noise_niid', 'CBSD68_niid_case1.hdf5')
    test_case2_h5 = Path('test_data').joinpath('noise_niid', 'CBSD68_niid_case2.hdf5')
    test_case3_h5 = Path('test_data').joinpath('noise_niid', 'CBSD68_niid_case3.hdf5')
    test_im_list = (Path('test_data') / 'CBSD68').glob('*.png')
    test_im_list = sorted([str(x) for x in test_im_list])
    datasets = {'train':DenoisingDatasets.SimulateTrain(train_im_list, 5000*args.batch_size,
                                          args.patch_size, radius=args.radius, noise_estimate=True),
                         'test_cbsd681':DenoisingDatasets.SimulateTest(test_im_list, test_case1_h5),
                        'test_cbsd682': DenoisingDatasets.SimulateTest(test_im_list, test_case2_h5),
                        'test_cbsd683': DenoisingDatasets.SimulateTest(test_im_list, test_case3_h5)}
    # train model
    print('\nBegin training with GPU: ' + str(args.gpu_id))
    train_model(net, datasets, optimizer, scheduler, loss_fn)
Beispiel #3
0
from networks import VDN
from skimage.measure import compare_psnr, compare_ssim
from skimage import img_as_float, img_as_ubyte
from utils import load_state_dict_cpu
from matplotlib import pyplot as plt
import time
from scipy.io import loadmat

use_gpu = True
C = 3
dep_U = 4

# load the pretrained model
print('Loading the Model')
checkpoint = torch.load('./model_state/model_state_SIDD')
net = VDN(C, dep_U=dep_U, wf=64)
if use_gpu:
    net = torch.nn.DataParallel(net).cuda()
    net.load_state_dict(checkpoint)
else:
    load_state_dict_cpu(net, checkpoint)
net.eval()

im_noisy = loadmat('./test_data/DND/1.mat')['InoisySRGB']
H, W, _ = im_noisy.shape
if H % 2**dep_U != 0:
    H -= H % 2**dep_U
if W % 2**dep_U != 0:
    W -= W % 2**dep_U
im_noisy = im_noisy[:H, :W, ]
Beispiel #4
0
def main():
    # move the model to GPU
    if args.net.lower() == 'vdn':
        net = VDN.VDNU(_C,
                       args.activation,
                       args.relu_init,
                       wf=args.wf,
                       batch_norm=args.bn_UNet)
    elif args.net.lower() == 'vdnrd':
        net = VDN.VDNRD(_C,
                        args.activation,
                        args.relu_init,
                        num_RDB=args.num_RDB,
                        num_conv=args.num_conv,
                        growth_rate=args.growth_rate)
        clip_grad_D = 5e3
    elif args.net.lower() == 'vdnrdu':
        net = VDN.VDNRDU(_C,
                         args.activation,
                         args.relu_init,
                         num_RDB=args.num_RDBU,
                         num_conv=args.num_conv,
                         wf=args.wf)
    else:
        sys.exit('Please input the corrected network type')
    # multi GPU setting
    net = nn.DataParallel(net).cuda()

    # optimizer
    optimizer = optim.Adam(net.parameters(), lr=args.lr)
    if args.net.lower() == 'vdn':
        scheduler = optim.lr_scheduler.StepLR(optimizer, args.step_size,
                                              args.gamma)
    else:
        scheduler = optim.lr_scheduler.MultiStepLR(optimizer, args.multi_steps,
                                                   args.gamma)

    if args.resume:
        if os.path.isfile(args.resume):
            print('=> Loading checkpoint {:s}'.format(args.resume))
            checkpoint = torch.load(args.resume)
            args.epoch_start = checkpoint['epoch']
            args.step = checkpoint['step']
            args.step_img = checkpoint['step_img']
            optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
            scheduler.load_state_dict(checkpoint['lr_scheduler_state_dict'])
            net.load_state_dict(checkpoint['model_state_dict'])
            args.clip_grad_D = checkpoint['grad_norm_D']
            args.clip_grad_S = checkpoint['grad_norm_S']
            if args.activation.lower() == 'prelu':
                clip_grad_D_relu = checkpoint['grad_norm_D_relu']
                clip_grad_S_relu = checkpoint['grad_norm_S_relu']
            print('=> Loaded checkpoint {:s} (epoch {:d})'.format(
                args.resume, checkpoint['epoch']))
        else:
            sys.exit('Please provide corrected model path!')
    else:
        args.epoch_start = 0
        if os.path.isdir(args.log_dir):
            shutil.rmtree(args.log_dir)
        os.makedirs(args.log_dir)
        if os.path.isdir(args.model_dir):
            shutil.rmtree(args.model_dir)
        os.makedirs(args.model_dir)

    for arg in vars(args):
        print('{:<15s}: {:s}'.format(arg, str(getattr(args, arg))))

    # train dataset
    path_Renoir_train = os.path.join(args.Renoir_dir, 'small_imgs_all.hdf5')
    path_SIDD_train = os.path.join(args.SIDD_dir, 'small_imgs_train.hdf5')
    # test dataset
    path_SIDD_test = os.path.join(args.SIDD_dir, 'small_imgs_test.hdf5')
    if args.data_case == 1:
        dataset_Renoir_train = DenoisingDatasets.BenchmarkTrain(
            path_Renoir_train,
            1500 * args.batch_size,
            args.patch_size,
            radius=args.radius,
            eps2=args.eps2,
            noise_estimate=True)
        dataset_SIDD_train = DenoisingDatasets.BenchmarkTrain(
            path_SIDD_train,
            3500 * args.batch_size,
            args.patch_size,
            radius=args.radius,
            eps2=args.eps2,
            noise_estimate=True)
        datasets = {
            'train':
            uData.ConcatDataset((dataset_SIDD_train, dataset_Renoir_train)),
            'test_SIDD':
            DenoisingDatasets.BenchmarkTest(path_SIDD_test)
        }
    elif args.data_case == 2:
        datasets = {
            'train':
            DenoisingDatasets.BenchmarkTrain(path_SIDD_train,
                                             5000 * args.batch_size,
                                             args.patch_size,
                                             radius=args.radius,
                                             eps2=args.eps2,
                                             noise_estimate=True),
            'test_SIDD':
            DenoisingDatasets.BenchmarkTest(path_SIDD_test)
        }
    elif args.data_case == 3:
        datasets = {
            'train':
            DenoisingDatasets.BenchmarkTrain(path_Renoir_train,
                                             5000 * args.batch_size,
                                             args.patch_size,
                                             radius=args.radius,
                                             eps2=args.eps2,
                                             noise_estimate=True),
            'test_SIDD':
            DenoisingDatasets.BenchmarkTest(path_SIDD_test)
        }
    else:
        sys.exit('Please input the correct data case: 1, 2 and 3')
    # train model
    print('\nBegin training with GPU: ' + str(args.gpu_id))
    train_model(net, datasets, optimizer, scheduler, loss_fn)
Beispiel #5
0
from networks import VDN
from skimage.measure import compare_psnr, compare_ssim
from skimage import img_as_float, img_as_ubyte
from utils import load_state_dict_cpu
from matplotlib import pyplot as plt
import time
from scipy.io import loadmat

use_gpu = True
C = 3
dep_U = 4

# load the pretrained model
print('Loading the Model')
checkpoint = torch.load('./model_state/model_state_SIDD')
net = VDN.VDNU(C, dep_U=dep_U, wf=64, batch_norm=True)
if use_gpu:
    net = torch.nn.DataParallel(net).cuda()
    net.load_state_dict(checkpoint)
else:
    load_state_dict_cpu(net, checkpoint)
net.eval()

im_noisy = loadmat('./test_data/DND/1.mat')['im_noisy']
H, W, _ = im_noisy.shape
if H % 2**dep_U != 0:
    H -= H % 2**dep_U
if W % 2**dep_U != 0:
    W -= W % 2**dep_U
im_noisy = im_noisy[:H, :W, ]
Beispiel #6
0
from pathlib import Path
from utils import peaks, load_state_dict_cpu
from matplotlib import pyplot as plt
import time

use_gpu = False
C = 3
dep_U = 4
data_path = Path('test_data') / 'CBSD68'

im_list = [str(x) for x in data_path.glob('*.png')]

# load the pretrained model
print('Loading the Model')
checkpoint = torch.load('./model_state/model_state_niidgauss')
net = VDN.VDNU(C, dep_U=dep_U, wf=64)
if use_gpu:
    net = torch.nn.DataParallel(net).cuda()
    net.load_state_dict(checkpoint)
else:
    load_state_dict_cpu(net, checkpoint)
net.eval()

im_path = im_list[np.random.randint(0, len(im_list))]
im_name = im_path.split('/')[-1]
im_gt = img_as_float(cv2.imread(im_path)[:, :, ::-1])
H, W, _ = im_gt.shape
if H % 2**dep_U != 0:
    H -= H % 2**dep_U
if W % 2**dep_U != 0:
    W -= W % 2**dep_U