def test_create_using_keyword_arguments(self): assert_raises(nx.NetworkXError, gn_graph, 100, create_using=Graph()) assert_raises(nx.NetworkXError, gnr_graph, 100, 0.5, create_using=Graph()) assert_raises(nx.NetworkXError, gnc_graph, 100, create_using=Graph()) assert_raises(nx.NetworkXError, scale_free_graph, 100, create_using=Graph()) G = gn_graph(100, seed=1) MG = gn_graph(100, create_using=MultiDiGraph(), seed=1) assert_equal(sorted(G.edges()), sorted(MG.edges())) G = gnr_graph(100, 0.5, seed=1) MG = gnr_graph(100, 0.5, create_using=MultiDiGraph(), seed=1) assert_equal(sorted(G.edges()), sorted(MG.edges())) G = gnc_graph(100, seed=1) MG = gnc_graph(100, create_using=MultiDiGraph(), seed=1) assert_equal(sorted(G.edges()), sorted(MG.edges())) G = scale_free_graph(100, alpha=0.3, beta=0.4, gamma=0.3, delta_in=0.3, delta_out=0.1, create_using=MultiDiGraph, seed=1) assert_raises(ValueError, scale_free_graph, 100, 0.5, 0.4, 0.3) assert_raises(ValueError, scale_free_graph, 100, alpha=-0.3) assert_raises(ValueError, scale_free_graph, 100, beta=-0.3) assert_raises(ValueError, scale_free_graph, 100, gamma=-0.3)
def test_create_using_keyword_arguments(self): assert_raises(networkx.exception.NetworkXError, gn_graph, 100, create_using=Graph()) assert_raises(networkx.exception.NetworkXError, gnr_graph, 100, 0.5, create_using=Graph()) assert_raises(networkx.exception.NetworkXError, gnc_graph, 100, create_using=Graph()) assert_raises(networkx.exception.NetworkXError, scale_free_graph, 100, create_using=Graph()) G = gn_graph(100, seed=1) MG = gn_graph(100, create_using=MultiDiGraph(), seed=1) assert_equal(sorted(G.edges()), sorted(MG.edges())) G = gnr_graph(100, 0.5, seed=1) MG = gnr_graph(100, 0.5, create_using=MultiDiGraph(), seed=1) assert_equal(sorted(G.edges()), sorted(MG.edges())) G = gnc_graph(100, seed=1) MG = gnc_graph(100, create_using=MultiDiGraph(), seed=1) assert_equal(sorted(G.edges()), sorted(MG.edges()))
def add_node(g: Graph, node): # zones are used to prevent cyclies if not node['role']: g.add_node(node['name'], **node_attrs(type='zone')) # if you do not supply a zone, the node is interpreted as being a machine # the role is attached as tag to the AWS instance and can be used to run # tasks only on machines with a certain role (see mockfog_application.yml notebook) else: g.add_node(node['name'], **node_attrs(role=node.get('role', None), flavor=node.get('flavor', None), image=node.get('image', None)))
def order_influencers(g: Graph, n=5): ''' Takes a networkx graph object and returns the n most connected vertices. In a social network, these would be the most influential accounts. ''' influencers = {} for account in g.get_vertices(): influencers[account] = len(g.get_vertex(account).get_neighbors()) influencers = Counter(influencers) return influencers.most_common(n)
def simple_topology(g: Graph): # zones are used to prevent cyclies g.add_node('cloud1', **node_attrs(type='zone')) # if you do not supply a zone, the node is interpreted as being a machine # the role is attached as tag to the AWS instance and can be used to run tasks only on machines with a certain role (see mockfog_application.yml notebook) g.add_node('cloud1_broker1', **node_attrs(role='broker')) g.add_node('cloud1_client1', **node_attrs(role='client')) g.add_node('cloud1_client2', **node_attrs(role='client')) g.add_edge('cloud1_broker1', 'cloud1', **edge_attrs(delay=4)) g.add_edge('cloud1_client1', 'cloud1', **edge_attrs(delay=2)) g.add_edge('cloud1_client2', 'cloud1', **edge_attrs(delay=2))
def __init__(self, width, height): self.width = width self.height = height self.g = grid_2d_graph(width, height) for node, node_data in self.g.nodes(data=True): node_data['barrier'] = False for src, dst, edge_data in self.g.edges(data=True): edge_data['weight'] = min_int self.walls = set() self.boxes = set() self.bombs = {} # mapping from bomb to rounds self.players = set() self.enemies = set() self.boost_remain = 0 self.boost_renew = 0 max_radius = distance((0, 0), (self.width-1, self.height-1)) self.in_boost_sequence = [False] * max_radius self.radii = range(0, max_radius) self.points = list(product(range(self.width), range(self.height))) self.point_bomb_rounds = {p: max_int for p in self.points} self.bomb_ranges_graph = Graph() self.bomb_ranges_sub_graphs = connected_components(self.bomb_ranges_graph)
def empty_graph(n=0, create_using=None): """Return the empty graph with n nodes and zero edges. Parameters ========== n : int or iterable container of nodes (default = 0) If n is an integer, nodes are from `range(n)`. If n is a container of nodes, those nodes appear in the graph. create_using : Graph, optional (default Graph()) If provided this graph is cleared of nodes and edges and filled with the new graph. Usually used to set the type of the graph. For example: >>> G = nx.empty_graph(10) >>> G.number_of_nodes() 10 >>> G.number_of_edges() 0 >>> G = nx.empty_graph("ABC") >>> G.number_of_nodes() 3 >>> sorted(G) ['A', 'B', 'C'] Notes ===== The variable create_using should point to a "graph"-like object that will be cleared (nodes and edges will be removed) and refitted as an empty "graph" with nodes specified in n. This capability is useful for specifying the class-nature of the resulting empty "graph" (i.e. Graph, DiGraph, MyWeirdGraphClass, etc.). The variable create_using has two main uses: Firstly, the variable create_using can be used to create an empty digraph, multigraph, etc. For example, >>> n = 10 >>> G = nx.empty_graph(n, create_using=nx.DiGraph()) will create an empty digraph on n nodes. Secondly, one can pass an existing graph (digraph, multigraph, etc.) via create_using. For example, if G is an existing graph (resp. digraph, multigraph, etc.), then empty_graph(n, create_using=G) will empty G (i.e. delete all nodes and edges using G.clear()) and then add n nodes and zero edges, and return the modified graph. See also create_empty_copy(G). """ if create_using is None: # default empty graph is a simple graph G = Graph() else: G = create_using G.clear() n_name, nodes = n G.add_nodes_from(nodes) return G
def make_graph(): g = Graph() accounts = listdir(DATA_PATH) for account in accounts: g.add_node(account) direct_connections = open( '../data/instagram/ikeybenz/connections.txt').read().splitlines() for connection in direct_connections: g.add_edge('ikeybenz', connection) g.add_edge(connection, 'ikeybenz') for account in accounts: try: # Some connections have no mutual followers with me mutual_followers_of_account = open( f'{DATA_PATH}/{account}/mutuals_with_ikeybenz.txt').read().splitlines() except: # In that case, skip current account continue for follower in mutual_followers_of_account: g.add_edge(follower, account) return g
def reference_topology_bridge(g: Graph): # Cloud nodes g.add_node('cloud1', **node_attrs(type='zone')) g.add_node( 'cloud1_client1', **node_attrs(role='client', client_config=[ pub_config( connect_to='cloud1_broker1', topic='/push-infos/road-conditions', frequency=5, payload_size=10000, ), sub_config( connect_to='cloud1_broker1', topic='/car-telemetry/aggregated/#', ), sub_config( connect_to='cloud1_broker1', topic='/traffic-control/camera-feed/#', ), ])) g.add_node('cloud1_broker1', **node_attrs(role='broker', flavor='t3.small')) # Edge zone #1 g.add_node('edge1', **node_attrs(type='zone')) g.add_node( 'edge1_client1', **node_attrs(role='client', client_config=[ pub_config( connect_to='edge1_broker1', topic='/traffic-control/camera-feed/1', frequency=20, payload_size=500000, ), ])) g.add_node( 'edge1_client2', **node_attrs(role='client', client_config=[ sub_config( connect_to='edge1_broker2', topic='/car-telemetry/realtime/3', ), sub_config( connect_to='edge1_broker2', topic='/car-telemetry/realtime/4', ), pub_config( connect_to='edge1_broker2', topic='/car-telemetry/aggregated/2', frequency=5, payload_size=4000, ), pub_config( connect_to='edge1_broker2', topic='/car-telemetry/realtime/2', frequency=100, payload_size=200, ), ])) g.add_node( 'edge1_client3', **node_attrs(role='client', client_config=[ sub_config( connect_to='edge1_broker3', topic='/car-telemetry/realtime/2', ), sub_config( connect_to='edge1_broker3', topic='/car-telemetry/realtime/4', ), pub_config( connect_to='edge1_broker3', topic='/car-telemetry/aggregated/3', frequency=5, payload_size=4000, ), pub_config( connect_to='edge1_broker3', topic='/car-telemetry/realtime/3', frequency=100, payload_size=200, ), ])) g.add_node( 'edge1_client4', **node_attrs(role='client', client_config=[ sub_config( connect_to='edge1_broker3', topic='/car-telemetry/realtime/2', ), sub_config( connect_to='edge1_broker3', topic='/car-telemetry/realtime/3', ), pub_config( connect_to='edge1_broker3', topic='/car-telemetry/aggregated/4', frequency=5, payload_size=4000, ), pub_config( connect_to='edge1_broker3', topic='/car-telemetry/realtime/4', frequency=100, payload_size=200, ), ])) g.add_node('edge1_broker1', **node_attrs(role='broker', flavor='t3.small')) g.add_node('edge1_broker2', **node_attrs(role='broker', flavor='t3.small')) g.add_node('edge1_broker3', **node_attrs(role='broker', flavor='t3.small')) # Connect cloud g.add_edge('cloud1_broker1', 'cloud1', **edge_attrs(delay=2)) g.add_edge('cloud1_client1', 'cloud1', **edge_attrs(delay=2)) # Connect edge #1 g.add_edge('edge1_client1', 'edge1_broker1', **edge_attrs(delay=2)) g.add_edge('edge1_client2', 'edge1_broker2', **edge_attrs(delay=2)) g.add_edge('edge1_client3', 'edge1_broker3', **edge_attrs(delay=2)) g.add_edge('edge1_client4', 'edge1_broker3', **edge_attrs(delay=2)) g.add_edge('edge1_broker1', 'edge1_broker2', **edge_attrs(delay=2)) g.add_edge('edge1_broker2', 'edge1_broker3', **edge_attrs(delay=2)) g.add_edge('edge1', 'edge1_broker1', **edge_attrs()) # Connect to cloud g.add_edge('edge1', 'cloud1', **edge_attrs(delay=20))
def complete_multipartite_graph(*subset_sizes): """Returns the complete multipartite graph with the specified subset sizes. Parameters ---------- subset_sizes : tuple of integers or tuple of node iterables The arguments can either all be integer number of nodes or they can all be iterables of nodes. If integers, they represent the number of vertices in each subset of the multipartite graph. If iterables, each is used to create the nodes for that subset. The length of subset_sizes is the number of subsets. Returns ------- G : NetworkX Graph Returns the complete multipartite graph with the specified subsets. For each node, the node attribute 'subset' is an integer indicating which subset contains the node. Examples -------- Creating a complete tripartite graph, with subsets of one, two, and three vertices, respectively. >>> import networkx as nx >>> G = nx.complete_multipartite_graph(1, 2, 3) >>> [G.nodes[u]['subset'] for u in G] [0, 1, 1, 2, 2, 2] >>> list(G.edges(0)) [(0, 1), (0, 2), (0, 3), (0, 4), (0, 5)] >>> list(G.edges(2)) [(2, 0), (2, 3), (2, 4), (2, 5)] >>> list(G.edges(4)) [(4, 0), (4, 1), (4, 2)] >>> G = nx.complete_multipartite_graph('a', 'bc', 'def') >>> [G.nodes[u]['subset'] for u in sorted(G)] [0, 1, 1, 2, 2, 2] Notes ----- This function generalizes several other graph generator functions. - If no subset sizes are given, this returns the null graph. - If a single subset size `n` is given, this returns the empty graph on `n` nodes. - If two subset sizes `m` and `n` are given, this returns the complete bipartite graph on `m + n` nodes. - If subset sizes `1` and `n` are given, this returns the star graph on `n + 1` nodes. See also -------- complete_bipartite_graph """ # The complete multipartite graph is an undirected simple graph. G = Graph() if len(subset_sizes) == 0: return G # set up subsets of nodes try: extents = pairwise(accumulate((0,) + subset_sizes)) subsets = [range(start, end) for start, end in extents] except TypeError: subsets = subset_sizes # add nodes with subset attribute # while checking that ints are not mixed with iterables try: for (i, subset) in enumerate(subsets): G.add_nodes_from(subset, subset=i) except TypeError: raise NetworkXError("Arguments must be all ints or all iterables") # Across subsets, all vertices should be adjacent. # We can use itertools.combinations() because undirected. for subset1, subset2 in itertools.combinations(subsets, 2): G.add_edges_from(itertools.product(subset1, subset2)) return G
def debug_topology(g: Graph): # Cloud zone #1 g.add_node('cloud1', **node_attrs(type='zone')) g.add_node('cloud1_broker1', **node_attrs(role='broker')) g.add_node( 'cloud1_client1', **node_attrs(role='client', client_config=[ pub_config(connect_to='cloud1_broker1', topic='topic1', frequency=100), pub_config(connect_to='cloud1_broker1', topic='topic2', frequency=10, payload_size=2000) ])) g.add_node( 'cloud1_client2', **node_attrs(role='client', client_config=[ sub_config(connect_to='cloud1_broker1', topic='topic1'), sub_config(connect_to='cloud1_broker1', topic='topic2') ])) g.add_edge('cloud1_broker1', 'cloud1', **edge_attrs(delay=2)) g.add_edge('cloud1_client1', 'cloud1', **edge_attrs(delay=2)) g.add_edge('cloud1_client2', 'cloud1', **edge_attrs(delay=2))
def complete_multipartite_graph(*subset_sizes): """Returns the complete multipartite graph with the specified subset sizes. Parameters ---------- subset_sizes : tuple of integers or tuple of node iterables The arguments can either all be integer number of nodes or they can all be iterables of nodes. If integers, they represent the number of vertices in each subset of the multipartite graph. If iterables, each is used to create the nodes for that subset. The length of subset_sizes is the number of subsets. Returns ------- G : NetworkX Graph Returns the complete multipartite graph with the specified subsets. For each node, the node attribute 'subset' is an integer indicating which subset contains the node. Examples -------- Creating a complete tripartite graph, with subsets of one, two, and three vertices, respectively. >>> import networkx as nx >>> G = nx.complete_multipartite_graph(1, 2, 3) >>> [G.nodes[u]['subset'] for u in G] [0, 1, 1, 2, 2, 2] >>> list(G.edges(0)) [(0, 1), (0, 2), (0, 3), (0, 4), (0, 5)] >>> list(G.edges(2)) [(2, 0), (2, 3), (2, 4), (2, 5)] >>> list(G.edges(4)) [(4, 0), (4, 1), (4, 2)] >>> G = nx.complete_multipartite_graph('a', 'bc', 'def') >>> [G.nodes[u]['subset'] for u in sorted(G)] [0, 1, 1, 2, 2, 2] Notes ----- This function generalizes several other graph generator functions. - If no subset sizes are given, this returns the null graph. - If a single subset size `n` is given, this returns the empty graph on `n` nodes. - If two subset sizes `m` and `n` are given, this returns the complete bipartite graph on `m + n` nodes. - If subset sizes `1` and `n` are given, this returns the star graph on `n + 1` nodes. See also -------- complete_bipartite_graph """ # The complete multipartite graph is an undirected simple graph. G = Graph() if len(subset_sizes) == 0: return G # set up subsets of nodes try: extents = pairwise(accumulate((0, ) + subset_sizes)) subsets = [range(start, end) for start, end in extents] except TypeError: subsets = subset_sizes # add nodes with subset attribute # while checking that ints are not mixed with iterables try: for (i, subset) in enumerate(subsets): G.add_nodes_from(subset, subset=i) except TypeError: raise NetworkXError("Arguments must be all ints or all iterables") # Across subsets, all vertices should be adjacent. # We can use itertools.combinations() because undirected. for subset1, subset2 in itertools.combinations(subsets, 2): G.add_edges_from(itertools.product(subset1, subset2)) return G
def hexagonal_lattice_graph(m, n, periodic=False, with_positions=True, create_using=None): """Returns an `m` by `n` hexagonal lattice graph. The *hexagonal lattice graph* is a graph whose nodes and edges are the `hexagonal tiling`_ of the plane. The returned graph will have `m` rows and `n` columns of hexagons. `Odd numbered columns`_ are shifted up relative to even numbered columns. Positions of nodes are computed by default or `with_positions is True`. Node positions creating the standard embedding in the plane with sidelength 1 and are stored in the node attribute 'pos'. `pos = nx.get_node_attributes(G, 'pos')` creates a dict ready for drawing. .. _hexagonal tiling: https://en.wikipedia.org/wiki/Hexagonal_tiling .. _Odd numbered columns: http://www-cs-students.stanford.edu/~amitp/game-programming/grids/ Parameters ---------- m : int The number of rows of hexagons in the lattice. n : int The number of columns of hexagons in the lattice. periodic : bool Whether to make a periodic grid by joining the boundary vertices. For this to work `n` must be odd and both `n > 1` and `m > 1`. The periodic connections create another row and column of hexagons so these graphs have fewer nodes as boundary nodes are identified. with_positions : bool (default: True) Store the coordinates of each node in the graph node attribute 'pos'. The coordinates provide a lattice with vertical columns of hexagons offset to interleave and cover the plane. Periodic positions shift the nodes vertically in a nonlinear way so the edges don't overlap so much. create_using : NetworkX graph If specified, this must be an instance of a NetworkX graph class. It will be cleared of nodes and edges and filled with the new graph. Usually used to set the type of the graph. If graph is directed, edges will point up or right. Returns ------- NetworkX graph The *m* by *n* hexagonal lattice graph. """ G = create_using if create_using is not None else Graph() G.clear() if m == 0 or n == 0: return G if periodic and (n % 2 == 1 or m < 2 or n < 2): msg = "periodic hexagonal lattice needs m > 1, n > 1 and even n" raise NetworkXError(msg) M = 2 * m # twice as many nodes as hexagons vertically rows = range(M + 2) cols = range(n + 1) # make lattice col_edges = (((i, j), (i, j + 1)) for i in cols for j in rows[:M + 1]) row_edges = (((i, j), (i + 1, j)) for i in cols[:n] for j in rows if i % 2 == j % 2) G.add_edges_from(col_edges) G.add_edges_from(row_edges) # Remove corner nodes with one edge G.remove_node((0, M + 1)) G.remove_node((n, (M + 1) * (n % 2))) # identify boundary nodes if periodic if periodic: for i in cols[:n]: G = contracted_nodes(G, (i, 0), (i, M)) for i in cols[1:]: G = contracted_nodes(G, (i, 1), (i, M + 1)) for j in rows[1:M]: G = contracted_nodes(G, (0, j), (n, j)) G.remove_node((n, M)) # calc position in embedded space ii = (i for i in cols for j in rows) jj = (j for i in cols for j in rows) xx = (0.5 + i + i // 2 + (j % 2) * ((i % 2) - .5) for i in cols for j in rows) h = sqrt(3) / 2 if periodic: yy = (h * j + .01 * i * i for i in cols for j in rows) else: yy = (h * j for i in cols for j in rows) # exclude nodes not in G pos = {(i, j): (x, y) for i, j, x, y in zip(ii, jj, xx, yy) if (i, j) in G} set_node_attributes(G, pos, 'pos') return G
def bomb_range_graph(u): x, y = u g = Graph() g.add_path([(x-2, y), (x-1, y), (x, y), (x+1, y), (x+2, y)]) g.add_path([(x, y-2), (x, y-1), (x, y), (x, y+1), (x, y+2)]) return g
class Map(object): def __init__(self, width, height): self.width = width self.height = height self.g = grid_2d_graph(width, height) for node, node_data in self.g.nodes(data=True): node_data['barrier'] = False for src, dst, edge_data in self.g.edges(data=True): edge_data['weight'] = min_int self.walls = set() self.boxes = set() self.bombs = {} # mapping from bomb to rounds self.players = set() self.enemies = set() self.boost_remain = 0 self.boost_renew = 0 max_radius = distance((0, 0), (self.width-1, self.height-1)) self.in_boost_sequence = [False] * max_radius self.radii = range(0, max_radius) self.points = list(product(range(self.width), range(self.height))) self.point_bomb_rounds = {p: max_int for p in self.points} self.bomb_ranges_graph = Graph() self.bomb_ranges_sub_graphs = connected_components(self.bomb_ranges_graph) def set_barrier(self, point): self.g.node[point]['barrier'] = True for neighbor, edge_data in self.g[point].items(): edge_data['weight'] = max_int def clear_barrier(self, point): self.g.node[point]['barrier'] = False for neighbor, edge_data in self.g[point].items(): if not self.g.node[neighbor]['barrier']: edge_data['weight'] = min_int def is_barrier(self, u): return self.g.node[u]['barrier'] def reset(self): for box in self.boxes: self.clear_barrier(box) for bomb in self.bombs: self.clear_barrier(bomb) self.boxes.clear() self.bombs.clear() self.players.clear() self.enemies.clear() self.point_bomb_rounds = {p: max_int for p in self.points} self.bomb_ranges_graph.clear() def add_wall(self, u): self.set_barrier(u) self.walls.add(u) def add_box(self, u): self.set_barrier(u) self.boxes.add(u) def remove_box(self, u): # self.clear_barrier(u) self.boxes.remove(u) def add_bomb(self, u, rounds, update=False): self.set_barrier(u) self.bombs[u] = rounds self.bomb_ranges_graph.add_edges_from(bomb_range_graph(u).edges()) if update: self.update_bomb_rounds() def remove_bomb(self, u): self.clear_barrier(u) del self.bombs[u] self.bomb_ranges_graph.remove_edges_from(bomb_range_graph(u).edges()) self.update_bomb_rounds() def update_bomb_rounds(self): self.bomb_ranges_sub_graphs = connected_components(self.bomb_ranges_graph) for sub_graph in self.bomb_ranges_sub_graphs: rounds = max_int for n in sub_graph: if n in self.bombs and self.bombs[n] < rounds: rounds = self.bombs[n] for n in sub_graph: self.point_bomb_rounds[n] = rounds def is_safe(self, u, rounds): return self.point_bomb_rounds[u] != rounds def add_player(self, u): self.players.add(u) def add_enemy(self, u): self.enemies.add(u) def update_boost(self, boost_remain, boost_renew): self.boost_remain = boost_remain self.boost_renew = boost_renew if boost_remain: self.in_boost_sequence[:boost_remain] = [True] * boost_remain of = boost_remain cycles = cycle([False] * boost_renew_rounds + [True] * boost_remain_rounds) else: self.in_boost_sequence[:boost_renew] = [False] * boost_renew of = boost_renew cycles = cycle([True] * boost_remain_rounds + [False] * boost_renew_rounds) for i, c in enumerate(cycles): if of + i >= len(self.in_boost_sequence): break self.in_boost_sequence[of + i] = c log.debug('in_boost_sequence: %s' % self.in_boost_sequence) def is_boost(self): return self.in_boost_sequence[0] def update(self): self.update_bomb_rounds() def barriers(self): return self.walls.union(self.boxes, self.bombs) def path_len(self, path): for p in path[1:-1]: if self.g.node[p]['barrier']: return max_int return len(path) - 1 def shortest_path_and_len(self, src, dst): path = dijkstra_path(self.g, src, dst, 'weight') path_len = self.path_len(path) if path_len >= max_int: return None, None log.debug('path_len: %s, path: %s' % (path_len, path)) return path, path_len def offset_points(self, u, offsets): points = [] x, y = u for i, j in offsets: xn, yn = x + i, y + j if pre_origin < xn < self.width and pre_origin < yn < self.height: points.append((xn, yn)) return points def step_points(self, u, step): return self.offset_points(u, find_steps_offsets(step)) def bomb_range(self, u): points = self.offset_points(u, bomb_range_offsets) log.debug('bomb_range, range = %s' % points) return points def places_after_bury(self, u, boost=False): return self.offset_points(u, walk_offsets) if boost else self.offset_points(u, walk_one_offsets) def find_box_path(self, u): # one_step_enemies = [e for e in self.enemies if e in self.offset_points(u, walk_one_offsets)] # two_step_enemies = [e for e in self.enemies if e in self.offset_points(u, walk_two_offsets)] # log.debug('self.boxes: %s' % self.boxes) for step in self.radii: path = None path_len = max_int for v in self.step_points(u, step): # log.debug(str(v)) if v in (self.boxes or self.enemies): p, pl = self.shortest_path_and_len(u, v) if p: # path found if pl >= 3: # two or more steps log.debug('is_boost') if self.is_boost(): log.debug('is_boost') if not self.is_safe(p[2], 1): # bomb with rounds 1 log.debug('is_boost: %s, %s' % (p[2], self.point_bomb_rounds[u])) continue if p[1] in self.enemies or p[2] in self.enemies: # has enemy log.debug('is_boost: %s, %s' % (p[1], p[2])) continue elif not self.is_safe(p[2], 2): # bomb with rounds 2 continue elif pl == 2: # one step if not self.is_safe(p[1], 1): # bomb with rounds 1 continue if p[1] in self.enemies: # has enemy continue elif pl == 1: if not self.is_safe(p[0], 1): log.debug(str(self.point_bomb_rounds[p[0]])) continue if pl < path_len: path = p path_len = pl if path: self.remove_box(path[-1]) return path[-1], path[1:-1] return None, None def find_enemy_path(self, u): return None, None def find_safe_path(self, u): if self.is_safe(u, 1) and self.is_safe(u, 2): return u, [] if self.is_boost(): steps = [1, 2] else: steps = [1] for step in steps: path = None path_len = max_int for v in self.step_points(u, step): if v in self.barriers(): continue #TODO: should not walk to neighborhood of enemy p, pl = self.shortest_path_and_len(u, v) if p: if pl == 1: # one step if not self.is_safe(p[1], 1): continue elif pl == 2: # two steps if not self.is_safe(p[2], 1): continue if pl < path_len: path = p path_len = pl if path: return path[-1], path[1:] return None, None def need_bomb(self, u, place_bomb=True): has_add_bomb = False for v in self.bomb_range(u): if v in self.players: if not has_add_bomb: self.add_bomb(u, 3, True) has_add_bomb = True if not self.is_safe(v, 1): self.remove_bomb(u) return False if (v in self.boxes or v in self.enemies) and center(u, v) not in self.walls.union(self.bombs): if not has_add_bomb and place_bomb: self.add_bomb(u, 3, True) if has_add_bomb and not place_bomb: self.remove_bomb(u) return True if has_add_bomb: self.remove_bomb(u) return False def need_bomb_b(self, u): for v in self.bomb_range(u): if v in self.players: return False if (v in self.boxes or v in self.enemies) and center(u, v) not in self.walls.union(self.bombs.keys()): return True return False def steps_places(self, u, steps, full=False): if steps == 2: steps_offsets = bomb_2steps_offsets if full: steps_offsets = twosteps_offsets else: steps_offsets = find_steps_offsets(steps) ps = [] x, y = u for i, j in steps_offsets: xn = x + i yn = y + j if (pre_origin < xn < self.width) and (pre_origin < yn < self.height): ps.append((xn, yn)) log.debug('steps_places: %s' % ps) return ps def hide_places(self, u, before=True): # if before: # steps = 3 # else: # steps = 2 ps = [] barriers = self.walls.union(self.boxes, self.bombs.keys(), self.enemies) log.debug('hide_places: %s' % barriers) for steps in [3, 2, 1]: for v in self.steps_places(u, steps): if v not in barriers: ps.append(v) return ps def is_safe_b(self, u, first=True, next_bomb=None): # for u in self.steps_places(u, 2): # if u in self.bombs: # return False # return True bomb_scope = [] if next_bomb: bomb_scope = self.bomb_range(next_bomb) ps = self.bomb_range(u) log.debug('bombs: %s' % self.bombs) for p in chain(ps, bomb_scope): if p in self.bombs: rounds = self.bombs[p] if first and (rounds == 1 or (rounds == 2 and distance(u, p) == 1)): return False if next_bomb and (p in bomb_scope or p in ps) and first and distance(u, next_bomb) == 1: return False if not first and rounds in (1, 2): return False return True def places(self, u, offsets): ps = [] x, y = u for i, j in offsets: xn = x + i yn = y + j if pre_origin < xn < self.width and pre_origin < yn < self.height: ps.append((xn, yn)) return ps def is_safe_for_others(self, u, others): barriers = self.walls.union(self.boxes, self.bombs.keys()) barriers.add(u) ps = [] for o in others: ps.append(o.cur) ps.append(o.last_want) for p in ps: places = self.places(p, onestep_offsets) if len([q for q in places if q in barriers]) == len(places): return False # if len([q for q in self.places(p, onestep_offsets) if q in barriers]) == 4: # return False return True def safe_place(self, u, is_boost): bomb_list = [] for v in self.bomb_range(u): if v in self.bombs: dis = distance(v, u) if dis == 2 and self.center(v, u) not in self.walls.union(self.boxes): bomb_list.append(v) elif dis == 1: bomb_list.append(v) if u in self.bombs: bomb_list.append(u) if not bomb_list: return u # if not [v for v in self.bomb_range(u) if v in self.bombs]: # return u vs = [] rounds = 0 t = None barriers = self.walls.union(self.boxes, self.bombs.keys()) log.debug('bombs: %s' % self.bombs) for steps in [1, 2]: for v in self.steps_places(u, steps, full=True): if v not in barriers: vs.append(v) if not [w for w in self.bomb_range(v) if w in self.bombs and (distance(w, v) <= 2 or self.bombs[w] > steps)]: places = self.places(v, onestep_offsets) if len([q for q in places if q in barriers]) != len(places): log.debug('safe_place: %s' % str(v)) return v log.debug('vs safe_place: %s' % vs) if steps == 1: b_num = max_int for r in vs: has_bomb = False places = self.places(r, onestep_offsets) bs = len([q for q in places if q in barriers]) if bs == len(places): log.debug('places: %s' % [([q for q in places if q in barriers]), places]) continue # if bs < b_num: # b_num = bs rs = max_int for s in self.bomb_range(r): if s in self.bombs: has_bomb = True # if self.bombs[s] > rounds: if self.bombs[s] < rs: rs = self.bombs[s] # t = r log.debug('bomb safe_place: %s' % [self.bombs[s], t]) log.debug('rs: %s, bs: %s' % (rs, bs)) if (rs != max_int and rs > rounds) or (rs != max_int and rs == rounds and bs > b_num): log.debug('rs: %s, bs: %s' % (rs, bs)) rounds = rs t = r b_num = bs if not has_bomb: rounds = max_int t = r log.debug('bomb safe_place: %s' % str(t)) if not is_boost and t: return t del vs[:] elif is_boost: b_num = max_int for r in vs: has_bomb = False places = self.places(r, onestep_offsets) bs = len([q for q in places if q in barriers]) if bs == len(places): log.debug('places: %s' % [([q for q in places if q in barriers]), places]) continue # if bs < b_num: # b_num = bs rs = max_int for s in self.bomb_range(r): if s in self.bombs: has_bomb = True # if self.bombs[s] >= rounds: if self.bombs[s] < rs: rs = self.bombs[s] # rounds = self.bombs[s] # t = r log.debug('bomb safe_place: %s' % [self.bombs[s], t]) log.debug('rs: %s, bs: %s' % (rs, bs)) if (rs != max_int and rs > rounds) or (rs != max_int and rs == rounds and bs > b_num): log.debug('rs: %s, bs: %s' % (rs, bs)) rounds = rs t = r b_num = bs if not has_bomb: rounds = max_int t = r log.debug('bomb safe_place: %s' % str(t)) if t: return t log.error('safe_place error') return None
def get_graph(self, word_len: int) -> Graph: """ Get a graph by the word length """ return self.graphs.get(word_len, Graph())
def simple_topology(g: Graph): # zones are used to prevent cyclies g.add_node('cloud1', **node_attrs(type='zone')) # if you do not supply a zone, the node is interpreted as being a machine # the role is attached as tag to the AWS instance and can be used to run tasks only on machines with a certain role (see mockfog_application.yml notebook) g.add_node( 'cloud1_broker1', **node_attrs( role='broker', # there can be multiple app configs, if needed app_configs=[ app_config( # this automatically adds an internal_ip field to the output with the respective node ip connect_to='cloud1_client1', # you can define in commons whether fields are mandatory timeout=10) ])) g.add_node( 'cloud1_client1', **node_attrs( role='client', app_configs=[app_config(connect_to='cloud1_client2', timeout=10)])) g.add_node( 'cloud1_client2', **node_attrs( role='client', app_configs=[app_config(connect_to='cloud1_client1', timeout=10)])) g.add_edge('cloud1_broker1', 'cloud1', **edge_attrs(delay=4)) g.add_edge('cloud1_client1', 'cloud1', **edge_attrs(delay=2)) g.add_edge('cloud1_client2', 'cloud1', **edge_attrs(delay=2))
def add_edge(g: Graph, edge): g.add_edge(edge['u_of_edge'], edge['v_of_edge'], **edge_attrs(delay=edge.get('delay', 0)))