def test_invalid_edge(self):
     G = nx.path_graph(4)
     assert not nx.is_matching(G, {(0, 3), (1, 2)})
     assert not nx.is_matching(G, {(0, 4)})
     G = nx.path_graph(4, create_using=nx.DiGraph)
     assert nx.is_matching(G, {(0, 1)})
     assert not nx.is_matching(G, {(1, 0)})
Beispiel #2
0
    def test_matching_bqm(self):
        bqm = dnx.matching_bqm(self.graph)

        # the ground states should be exactly the matchings of G
        sampleset = dimod.ExactSolver().sample(bqm)

        for sample, energy in sampleset.data(['sample', 'energy']):
            edges = [v for v, val in sample.items() if val > 0]
            self.assertEqual(nx.is_matching(self.graph, edges), energy == 0)
            self.assertTrue(energy == 0 or energy >= 1)

            # while we're at it, test deprecated is_matching
            with self.assertWarns(DeprecationWarning):
                self.assertEqual(nx.is_matching(self.graph, edges),
                                 dnx.is_matching(edges))
Beispiel #3
0
def check_component(component, structure):
    """
    Check whether any maximum cardinality matching of the given connected
    component of the symmetrization graph can respect ground truth
    """

    # Set the minimum observed distance of this component to be infinity

    minimum = float("inf")

    # Get the size of the maximum cardinality matching of this component

    max_matching_size = len(
        nx.max_weight_matching(component, maxcardinality=True))

    # Iterate over all subsets of edges of the component that are the same
    # size as the maximum cardinality matching

    for matching in itertools.combinations(component.edges(),
                                           max_matching_size):

        # Check that this is in fact a matching

        if nx.is_matching(component, matching):

            # Use helper to compute the minimum length edge of this matching

            minimum = min(minimum, check_matching(matching, structure))

    # Return the minimum observed distance for this component

    return minimum
Beispiel #4
0
def is_matching(G, Matching):
    """
		Determines if given graph is matching to given matching params
		Returns Boolean
	"""
    if not G and not Matching:
        raise Exception("Please provide Graph and Matching params")
    return nx.is_matching(G, Matching)
Beispiel #5
0
def is_valid_matching(matching_graph: nx.Graph,
                      solutions: List[MatchingSolution]) -> bool:
    for solution in solutions:
        if solution is None or not nx.is_matching(matching_graph,
                                                  set(solution)):
            return False

    return True
Beispiel #6
0
def max_matchings(graph):
    """
    Return an itertor over the maximum cardinality matchings of the graph
    """

    matching_size = len(nx.max_weight_matching(graph, maxcardinality=True))

    for matching in itertools.combinations(graph.edges(), matching_size):

        if nx.is_matching(graph, matching):

            yield matching
Beispiel #7
0
    def test_respect_matching(self):
        """
        Test that a maximum cardinality matching is activated
        """

        active_graph = TestClusteringCSP.symgraph.active_graph()
        solution = TestClusteringCSP.formula.solve()
        active_edges = [(alpha, beta) for vtype, alpha, beta in solution
                        if vtype == sat.Formula.ACT_VAR]

        # Iterate over the active complex components of the symgraph

        for cc in nx.connected_component_subgraphs(active_graph):

            edges = [(a, b) for a, b in active_edges
                     if a in cc.nodes() and b in cc.nodes()]

            self.assertTrue(nx.is_matching(cc, edges))
 def test_empty_matching(self):
     G = nx.path_graph(4)
     assert_true(nx.is_matching(G, set()))
 def test_dict(self):
     G = nx.path_graph(4)
     assert_true(nx.is_matching(G, {0: 1, 1: 0, 2: 3, 3: 2}))
Beispiel #10
0
 def test_invalid(self):
     G = nx.path_graph(4)
     assert_false(nx.is_matching(G, {(0, 1), (1, 2), (2, 3)}))
Beispiel #11
0
 def test_valid(self):
     G = nx.path_graph(4)
     assert_true(nx.is_matching(G, {(0, 1), (2, 3)}))
 def test_valid(self):
     G = nx.path_graph(4)
     assert_true(nx.is_matching(G, {(0, 1), (2, 3)}))
Beispiel #13
0
 def test_empty_matching(self):
     G = nx.path_graph(4)
     assert_true(nx.is_matching(G, set()))
Beispiel #14
0
 def test_dict(self):
     G = nx.path_graph(4)
     assert_true(nx.is_matching(G, {0: 1, 1: 0, 2: 3, 3: 2}))
def is_matching(G, s):
    return nx.is_matching(G, s)
 def test_single_edge(self):
     G = nx.path_graph(4)
     assert_true(nx.is_matching(G, {(1, 2)}))
 def test_edge_order(self):
     G = nx.path_graph(4)
     assert_true(nx.is_matching(G, {(0, 1), (2, 3)}))
     assert_true(nx.is_matching(G, {(1, 0), (2, 3)}))
     assert_true(nx.is_matching(G, {(0, 1), (3, 2)}))
     assert_true(nx.is_matching(G, {(1, 0), (3, 2)}))
Beispiel #18
0
 def test_single_edge(self):
     G = nx.path_graph(4)
     assert_true(nx.is_matching(G, {(1, 2)}))
 def test_invalid(self):
     G = nx.path_graph(4)
     assert_false(nx.is_matching(G, {(0, 1), (1, 2), (2, 3)}))
Beispiel #20
0
 def test_edge_order(self):
     G = nx.path_graph(4)
     assert_true(nx.is_matching(G, {(0, 1), (2, 3)}))
     assert_true(nx.is_matching(G, {(1, 0), (2, 3)}))
     assert_true(nx.is_matching(G, {(0, 1), (3, 2)}))
     assert_true(nx.is_matching(G, {(1, 0), (3, 2)}))