Beispiel #1
0
    def test_log_scale(self):
        original_image_name = format_image_name("log_scale.png")
        original_image = os.path.join(IMGDIR, original_image_name)

        with image_comparison(original_image) as fig:
            ax = fig.add_subplot(1, 1, 1)
            network = reproducible_network_train(step=0.3)
            plots.error_plot(network, logx=True, ax=ax, show=False)
Beispiel #2
0
    def test_log_scale(self):
        original_image_name = format_image_name("log_scale.png")
        original_image = os.path.join(IMGDIR, original_image_name)

        with image_comparison(original_image) as fig:
            ax = fig.add_subplot(1, 1, 1)
            network = reproducible_network_train(step=0.3)
            plots.error_plot(network, logx=True, ax=ax, show=False)
Beispiel #3
0
    def test_error_plot_and_validation_error_warnings(self):
        with catch_stdout() as out:
            network = algorithms.GradientDescent((2, 3, 1), verbose=True)

            network.errors = ErrorHistoryList([1, 2])
            network.validation_errors = ErrorHistoryList([None])

            plots.error_plot(network, ax=None, show=False)
            terminal_output = out.getvalue()
            self.assertIn("error will be ignored", terminal_output)
Beispiel #4
0
    def test_error_plot_and_validation_error_warnings(self):
        with catch_stdout() as out:
            network = algorithms.GradientDescent((2, 3, 1), verbose=True)

            network.errors = ErrorHistoryList([1, 2])
            network.validation_errors = ErrorHistoryList([None])

            plots.error_plot(network, ax=None, show=False)
            terminal_output = out.getvalue()
            self.assertIn("error will be ignored", terminal_output)
Beispiel #5
0
    def test_plot_with_validation_dataset(self):
        original_image_name = format_image_name("with_validation.png")
        original_image = os.path.join(IMGDIR, original_image_name)

        with image_comparison(original_image) as fig:
            ax = fig.add_subplot(1, 1, 1)

            x_train, x_test, y_train, y_test = simple_classification()
            gdnet = algorithms.GradientDescent((10, 12, 1), step=0.25)
            gdnet.train(x_train, y_train, x_test, y_test, epochs=100)
            plots.error_plot(gdnet, ax=ax, show=False)
Beispiel #6
0
    def test_plot_with_validation_dataset(self):
        original_image_name = format_image_name("with_validation.png")
        original_image = os.path.join(IMGDIR, original_image_name)

        with image_comparison(original_image) as fig:
            ax = fig.add_subplot(1, 1, 1)

            x_train, x_test, y_train, y_test = simple_classification()
            gdnet = algorithms.GradientDescent((10, 12, 1), step=0.25)
            gdnet.train(x_train, y_train, x_test, y_test, epochs=100)
            plots.error_plot(gdnet, ax=ax, show=False)
Beispiel #7
0
    def test_error_plot_show_image(self):
        def mock_plt_show():
            pass

        # Test suppose not to fail
        real_plt_show = plt.show
        plt.show = mock_plt_show

        network = reproducible_network_train(step=0.3)
        plots.error_plot(network, show=True)

        plt.show = real_plt_show
Beispiel #8
0
    def test_error_plot_show_image(self):
        def mock_plt_show():
            pass

        # Test suppose not to fail
        real_plt_show = plt.show
        plt.show = mock_plt_show

        network = reproducible_network_train(step=0.3)
        plots.error_plot(network, show=True)

        plt.show = real_plt_show
Beispiel #9
0
    def test_error_plot_ax_none(self):
        ax = plt.gca()

        network = algorithms.GradientDescent((2, 3, 1))
        ax_returned = plots.error_plot(network, ax=None, show=False)

        self.assertIs(ax_returned, ax)
Beispiel #10
0
    def test_error_plot_ax_none(self):
        ax = plt.gca()

        network = algorithms.GradientDescent((2, 3, 1))
        ax_returned = plots.error_plot(network, ax=None, show=False)

        self.assertIs(ax_returned, ax)
Beispiel #11
0
def run_neural_net():

    import_modules()

    dataset = datasets.load_boston()
    data, target = dataset.data, dataset.target

    data_scalar = preprocessing.MinMaxScaler()
    target_scalar = preprocessing.MinMaxScaler()

    data = data_scalar.fit_transform(data)
    target = target_scalar.fit_transform(target.reshape(-1, 1))

    environment.reproducible()

    x_train, x_test, y_train, y_test = train_test_split(data,
                                                        target,
                                                        train_size=0.85)

    cgnet = algorithms.ConjugateGradient(
        connection=[
            layers.Input(13),
            layers.Sigmoid(75),
            layers.Sigmoid(25),
            layers.Sigmoid(1),
        ],
        search_method='golden',
        show_epoch=1,
        verbose=True,
        addons=[algorithms.LinearSearch],
    )

    cgnet.train(x_train, y_train, x_test, y_test, epochs=30)

    plots.error_plot(cgnet)

    y_predict = cgnet.predict(x_test).round(1)
    error = rmsle(target_scalar.invers_transform(y_test), \
                  target_scalar.invers_transform(y_predict))

    return (error)
Beispiel #12
0
    def go(self):
        raw = self.datafile.read().splitlines()

        data = self._prepare_data(raw[::2])
        target = self._prepare_target(raw[1::2])
        print(len(data))
        print(len(target))

        environment.reproducible()

        x_train, x_test, y_train, y_test = train_test_split(data,
                                                            target,
                                                            train_size=0.85)

        print(x_train[0])
        connections = [
            layers.Input(100),
            layers.Linear(200),
            layers.Sigmoid(150),
            layers.Sigmoid(5),
        ]

        cgnet = algorithms.ConjugateGradient(
            connection=connections,
            search_method='golden',
            show_epoch=25,
            verbose=True,
            addons=[algorithms.LinearSearch],
        )

        cgnet.train(x_train, y_train, x_test, y_test, epochs=100)
        plots.error_plot(cgnet)

        y_predict = cgnet.predict(x_test).round(1)
        error = rmsle(y_test, y_predict)
        print(error)

        with open('lib/net/base_searcher.pickle', 'wb') as f:
            pickle.dump(cgnet, f)
        layers.Relu(100),
        layers.Relu(1),
    ],
    search_method='golden',
    show_epoch=1,
    verbose=True,
    addons=[algorithms.LinearSearch],
    step=0.01,
    epoch_end_signal=on_epoch_end,
    error='rmse',
)

cgnet.train(training_X, training_Y, testing_X, testing_Y, epochs=1000)
from neupy import plots

plots.error_plot(cgnet)
y_predicted = cgnet.predict(testing_X)
print("RMSE = " + str(estimators.rmse(y_predicted, testing_Y.ravel())))
print("MAE = " + str(estimators.mae(y_predicted, testing_Y.ravel())))
actual_mae = y_data_scaler.inverse_transform(
    estimators.mae(y_predicted, testing_Y))
print("MAE (no. of shares) = " + str(actual_mae.squeeze()))

# # SOM try out
# from neupy import algorithms
#
# num_epochs = 100
# num_clusters = 3
# num_features = training_X.shape[1]
#
# sofm = algorithms.SOFM(n_inputs=num_features, n_outputs=num_clusters, step=0.1, learning_radius=0, verbose=True,
import numpy as np
from neupy import algorithms, plots

x_train = np.array([[1, 2], [3, 4]])
y_train = np.array([[1], [0]])

lmnet = algorithms.LevenbergMarquardt((2, 3, 1))
lmnet.train(x_train, y_train)

plots.error_plot(lmnet)
Beispiel #15
0
    ],
    batch_size=128,
    step=0.1,
    # Using Mean Squared Error as the Loss Function
    error='mse',
    # Learning Rate
    #step=1.0,
    # Display network data in console
    verbose=True,
    # shuffle training data random before each epoch
    shuffle_data=True,
    show_epoch=1)
# Show network architecture in console
network.architecture()
network.train(x_train, y_train, x_test, y_test, epochs=70)
plots.error_plot(network)

# Making test filters
MIN_POWER = np.min(x_train)
MAX_POWER = np.max(x_train)

FrequencyTestArray = np.empty([500, 500], dtype='float32')
FrequencyTestArray[:, :] = MAX_POWER
np.fill_diagonal(FrequencyTestArray[0:500, :], MIN_POWER)

DoubleTestArray = np.empty([250, 500], dtype='float32')
DoubleTestArray[:, :] = MAX_POWER
for i in range(0, 250):
    DoubleTestArray[i, i] = MIN_POWER
    DoubleTestArray[i, -(i + 1)] = MIN_POWER
Beispiel #16
0
	def show_plow(self):
		plots.error_plot(self.network)
Beispiel #17
0
#se crea la red neuronal con la arquitectura 57 -7 -1
rpropnet = algorithms.RPROP(
    [
        layers.Input(57),
        layers.Sigmoid(7),
        layers.Sigmoid(1),
    ],
    error='mse',
    verbose=True,
    shuffle_data=True,
    maxstep=1,
    minstep=1e-7,
)

#se realiza el entrenamiento de la red
rpropnet.train(input_train=x_train,target_train=y_train,epochs=200)

#se muestra un grafico de los errores cometidos en el entrenamiento
plots.error_plot(rpropnet)

y_train_predicted = rpropnet.predict(x_train).round()
y_test_predicted = rpropnet.predict(x_test).round()

# se muestran las predicciones
print(metrics.classification_report(y_train_predicted, y_train))
print(metrics.confusion_matrix(y_train_predicted, y_train))
print()
print(metrics.classification_report(y_test_predicted, y_test))
print(metrics.confusion_matrix(y_test_predicted, y_test))