Beispiel #1
0
    def decompose(self):
        sr = self.sr
        out_dir = self.out_dir
        cache = self.cache
        log = self.log
        log_info = self.log_info
        gpu_num = self.gpu_num
        file_name = self.file_name
        track_audio = self.track_audio

        downbeat_path = os.path.join(
            get_save_dir(out_dir, ['extracted', 'downbeat']),
            f'{file_name}.npy')
        core_path = os.path.join(get_save_dir(out_dir, ['extracted', 'core']),
                                 f'{file_name}.npy')
        factors_path = os.path.join(
            get_save_dir(out_dir, ['extracted', 'factors']),
            f'{file_name}.npy')

        downbeat_times = load_np(downbeat_path, cache)
        core = load_np(core_path, cache)
        factors = load_np(factors_path, cache)

        downbeat_times = downbeat_times if type(downbeat_times) != type(
            None) else get_downbeats(track_audio)
        downbeat_frames = librosa.time_to_samples(downbeat_times, sr=sr)

        if log: log_message('Downbeat completed', log_info)
        spectral_cube = make_spectral_cube(track_audio, downbeat_frames)
        n_sounds, n_rhythms, n_loops = validate_template_sizes(
            spectral_cube, n_templates=[0, 0, 0])
        if type(core) == type(None) or type(factors) == type(None):
            core, factors = tl.decomposition.non_negative_tucker(
                tl.tensor(np.abs(spectral_cube), device=f'cuda:{gpu_num}'),
                [n_sounds, n_rhythms, n_loops],
                n_iter_max=500,
                verbose=True)
            core = np.array(core.detach().to('cpu').numpy())
            factors = [
                np.array(factor.detach().to('cpu').numpy())
                for factor in factors
            ]

        if cache:
            save_np(downbeat_path, downbeat_times)
            save_np(core_path, core)
            save_np(factors_path, factors)

        self.n_loops = n_loops
        self.spectral_cube = spectral_cube
        self.core = core
        self.factors = factors
        self.downbeat_frames = downbeat_frames
def load_tracks(col_tracks):

    int_dir = settings.INT_DIR
    int_files = [
        int_file for int_file in os.listdir(int_dir)
        if int_file != '.ipynb_checkpoints'
    ]

    save_count, exist_count, total = 0, 0, len(int_files)
    log_message('Load tracks start')

    for int_file in int_files:
        int_path = os.path.join(int_dir, int_file)
        file_name, media_type = get_file_name(int_path)
        find_item = col_tracks.find_one({'file_name': file_name})

        if find_item:
            exist_count += 1
            log_message('Exist', [save_count, exist_count, total])
        else:
            save_count += 1
            col_tracks.save({
                'extracted': False,
                'file_name': file_name,
                'media_type': media_type,
            })
            log_message('Save', [save_count, exist_count, total])

    log_message('Load tracks completed')
Beispiel #3
0
def loops_tag(col_tags, tracks, tag):
    if settings.NG_TYPES['selected']:
        if tag == 1:
            log_message('Tag started')
            loops_path = [
                loop_path for track in tracks
                for loop_path in track['loops_path']
            ]
            for i, loop_path in enumerate(loops_path):
                log_info = [i + 1, len(loops_path)]
                find_item = col_tags.find_one({'loop_path': loop_path})
                if find_item:
                    log_message(f'{loop_path} existed', log_info)
                else:
                    loop_tag = Tagger(loop_path).tag()
                    log_message(f'{loop_path} tagged', log_info)
                    col_tags.save({'loop_path': loop_path, 'tag': loop_tag})
            log_message('Tag completed')
        harm_datas = [
            loop['loop_path'] for loop in col_tags.find({'tag': 'harm'})
        ]
    else:
        harm_datas = []

    return harm_datas
Beispiel #4
0
    def __init__(self, file_name, media_type, gpu_num, log_info=[]):

        self.sr = settings.SR
        self.cache = settings.CACHE
        self.log = settings.LOG
        self.int_dir = settings.INT_DIR
        self.out_dir = settings.OUT_DIR
        self.exist_thre = settings.EXISTED_THRESHOLD

        self.log_info = log_info
        self.file_name = file_name
        self.media_type = media_type
        self.gpu_num = gpu_num
        self.file_path = os.path.join(self.int_dir,
                                      f'{file_name}.{media_type}')
        self.track_audio = librosa.load(self.file_path, self.sr)[0]

        if self.log: log_message('Extractor started', self.log_info)
        self.decompose()
        if self.log: log_message('Decomposition completed', self.log_info)
        self.layout_retrieve()
        self.template = discrete_matrix(self.layout, self.exist_thre)
        if self.log:
            log_message('Layout & Template retrive completed', self.log_info)
        self.loop_extract()
        if self.log: log_message('Extractor completed', self.log_info)
Beispiel #5
0
    def save_model(self):

        log = self.log
        model = self.model
        out_dir = self.out_dir

        model_dir = get_save_dir(out_dir, ['models'])
        model_id = datetime.datetime.utcnow()
        model_name = f'{model_id}.pkl'
        model_path = os.path.join(model_dir, model_name)

        torch.save(model.state_dict(), model_path)
        if log: log_message(f'Saved modle {model_name}')

        return model_id, model_name
    def __init__(self, extractor, log_info=[]):
        
        self.sr           = settings.SR
        self.dur          = settings.DUR
        self.log          = settings.LOG

        self.exist_thre   = settings.EXISTED_THRESHOLD
        self.dupl_thre    = settings.HASH_THRESHOLD
        
        self.log_info     = log_info
        self.extractor    = extractor
        
        if self.log: log_message('Refintor started', self.log_info)
        self.refinement()
        self.template  = discrete_matrix(self.layout, self.exist_thre)
        if self.log: log_message('Refintor completed', self.log_info)
Beispiel #7
0
    def train(self):
        log = self.log
        device = self.device
        model = self.model
        loss_fn = self.loss_fn
        scheduler = self.scheduler
        optimizer = self.optimizer
        train_loader = self.train_loader
        log_interval = self.log_interval

        model.train()
        train_loss = 0

        for batch_idx, (*datas, targets) in enumerate(train_loader):
            inputs, *others = datas
            if not type(inputs) in (tuple, list):
                inputs = (inputs, )

            if device:
                inputs = tuple(i.to(device) for i in inputs)
                if targets is not None:
                    targets = targets.to(device)

            targets = torch.tensor(targets, dtype=torch.float, device=device)
            optimizer.zero_grad()
            outputs = model(*inputs)

            if type(outputs) not in (tuple, list):
                outputs = (outputs, )

            loss_inputs = outputs
            if targets is not None:
                targets = (targets, )
                loss_inputs += targets

            loss = loss_fn(*loss_inputs)
            loss.backward()
            train_loss += loss.item()
            optimizer.step()
            if batch_idx % log_interval == 0 & log:
                log_message(f'Loss: {loss.item()}',
                            [batch_idx, len(train_loader)])

        self.model = model
        return train_loss / (batch_idx + 1)
Beispiel #8
0
    def fit(self):
        device = self.device
        scheduler = self.scheduler
        epochs = self.epochs
        model = self.model

        losses_history = {'train': [], 'val': []}
        for epoch in range(0, epochs):
            scheduler.step()
            train_loss = self.train()
            val_loss = self.validate()
            log_message(f'Train Loss: {train_loss}, Val Loss: {val_loss}',
                        [epoch + 1, epochs])

            losses_history['val'].append(val_loss)
            losses_history['train'].append(train_loss)
        losses_avg = {
            data_type: np.mean(np.array(losses_history[data_type]))
            for data_type in losses_history
        }

        return losses_avg, losses_history
Beispiel #9
0
 def sampling(self):
     tracks_key  = self.tracks_key
     tracks_dict = self.tracks_dict
     ng_types    = self.ng_types
     idv_datas   = self.idv_datas
     harm_datas  = self.harm_datas
     data_type   = self.data_type
     log         = self.log  
     neg_datas   = {ng_type:[] for ng_type in ng_types} 
     total       = len(tracks_key)
     
     for i, track_key in enumerate(tracks_key):
         excl_datas  = tracks_dict[track_key]['loops_path']
         pair_datas  = tracks_dict[track_key]['pairs_path']
         other_datas = data_exclude(idv_datas, excl_datas)
         for pair_data in pair_datas:
             neg_dict = Sampler(pair_data, other_datas, harm_datas).sampling()
             for neg_type in neg_dict:
                 neg_datas[neg_type].append(neg_dict[neg_type])
         if log: log_message(f'Negative Sampling processing ({data_type})', [i+1, total])
     if log: log_message(f'Negative Sampling completed ({data_type})')
     return neg_datas
def data_generation(col_tracks, col_loops):

    failed_count = 0
    break_loop = False
    count = failed_count

    failed_count = 0
    break_loop = False
    count = failed_count

    while 1:
        try:
            tracks = col_tracks.find({'extracted': False})
            total = tracks.count()
            count = failed_count

            if total == 0 or count + 1 == total:
                print('Finished.....')
                break

            for track in tracks[count:]:

                track_info = track.copy()
                file_name = track['file_name']
                media_type = track['media_type']
                log_info = [failed_count, count, total]
                track_loop = Pipeline(file_name, media_type, gpu_num, log_info)
                track_loop_info = track_loop.start()

                track_info['extracted'] = True
                col_tracks.save(track_info)

                find_item = col_loops.find_one({'file_name': file_name})
                if find_item:
                    track_loop_info['_id'] = find_item['_id']
                col_loops.save(track_loop_info)

                count += 1
                log_message('Save Success', log_info)

        except Exception as e:
            if type(e).__name__ == 'CursorNotFound':
                log_message('Restart')
            else:
                log_message(f'Save Failed: {e}')
                failed_count += 1
Beispiel #11
0
                        default=settings.LOG_INTERVAL)

    parser.add_argument('--neg_type', help='neg type', default='random')
    parser.add_argument('--model_type', help='model type', default='cnn')

    col_datasets = initialize_database(settings.MONGODB_DATASET_COL)
    col_models = initialize_database(settings.MONGODB_MODEL_COL)
    datas = col_datasets.find({}).sort('date', pymongo.DESCENDING)[0]
    datasets = load_dataset(settings.OUT_DIR, datas['data_path'])

    gpu_num = parser.parse_args().gpu_num
    log_interval = parser.parse_args().log_interval
    neg_type = parser.parse_args().neg_type

    if neg_type not in datas['neg_types']:
        log_message(f'{neg_type} not exists')
    else:
        model_type = 'snn' if parser.parse_args(
        ).model_type != 'cnn' else parser.parse_args().model_type
        lr = parser.parse_args().lr
        epochs = parser.parse_args().epochs
        batch_size = parser.parse_args().batch_size
        model, loss_fn, optimizer, scheduler, device = load_parameters(
            model_type, lr, batch_size, gpu_num)

        train_loader = load_dataloader(model_type, 'train', neg_type, datasets)
        val_loader = load_dataloader(model_type, 'val', neg_type, datasets)

        trainer = Trainer(model, train_loader, val_loader, loss_fn, optimizer,
                          scheduler, epochs, device, log_interval)
        log_message(f'Start train {model_type} with {neg_type}')
Beispiel #12
0
def dataset_creation(col_datasets, tracks, harm_datas):
    tracks_dict = {track['file_name']: track for track in tracks}
    log_message('Create dataset started')
    dataset = Dataset(tracks_dict, harm_datas).datas_retrieve()
    col_datasets.save(dataset)
    log_message('Create dataset completed')