def run():
    ## inputs = csv.open_card_csv('train.csv')
    ## #numbers hardcoded for now, and no functions specified
    ## out_node = Node(f)
    ## mid_layer1 = Layer(f_list1)
    ## mid_layer2 = Layer(f_list2)
    ## mid_layers = [mid_layer1,mid_layer2]
    ## network = Network(5,mid_layers,out_node)
    ## network = network.add_edges

    ## alg.train(inputs,network,10000)

    ## network.print_weights
    ## return
    t, v, r = icsv.csv_to_binary('train.csv')
    network = neural_net.Net([52, 30, 10])
    network.SGD(t, 30, 10, 3.0, test_data=r)
Beispiel #2
0
def train_ann_classifier(step_num, eta, active_func_type):
    #preprocess() # run at the first time to split the data

    train_data = load_data("./data/iris_train.data")
    labels = load_label("./data/iris_label.data")

    feature_num = len(train_data[0]) - 1
    hidden_node_num = feature_num + 8
    label_num = len(labels)
    '''
	print "feature_num: %d" % feature_num
	print "hidden_node_num: %d" % hidden_node_num
	print "label_num: %d" % label_num
	'''

    # initialize simple ann
    ann_net = neural_net.Net(feature_num, hidden_node_num, label_num,
                             active_func_type)

    # train
    for i in xrange(step_num):
        for ele in train_data:
            ann_net.train(ele[:-1], labels.index(ele[-1]), eta)

        # print accuracy of every 100 iterion
        if i % 100 == 0:
            m_count = 0
            for ele in train_data:
                m_count += ann_net.test(ele[:-1], labels.index(ele[-1]))
            print "accuracy of %d steps: %f" % (i, 1.0 * m_count /
                                                len(train_data))

    # test
    test_data = load_data("./data/iris_train.data")
    m_count = 0
    for ele in test_data:
        m_count += ann_net.test(ele[:-1], labels.index(ele[-1]))
    print "final accuracy: %f" % (1.0 * m_count / len(test_data))
Beispiel #3
0
import game
import neural_net
import time
import random

net = neural_net.Net([198, 40, 1])
gammon = game.Game()
print "Starting game..."
# 2 players roll dice, the largest goes first using the roll
# r1 is white, r2 is black
r1, r2 = (0, 0)
turn = 0
# keep rolling if get same
while r1 == r2:
    r1, r2 = gammon.roll_dice()
    if r1 > r2:
        turn = 1
    elif r2 > r1:
        turn = 0
start = 1
moves = 0
zero_actions = []
one_actions = []
while not gammon.game_over():
    actions = []
    if start:
        actions = gammon.get_actions((r1, r2), turn)
        start = 0
    else:
        roll = gammon.roll_dice()
        actions = gammon.get_actions(roll, turn)
import mnist_loader
import neural_net

# load dataset
training_data, validation_data, test_data = mnist_loader.load_data_wrapper()

# create subset of trainng data
training_data_subset = []
for i in range(0,10000):
	training_data_subset.append(training_data[i])
	
# neural_net.Net will only accept [784, 30, 10] -- will not work otherwise
net = neural_net.Net([784, 30, 10])

# subset used to save time because it takes forever O(n^2) to train
# pass in subset of training data and learning rate
#net.train(training_data_subset, .3)

# load saved network
net.load()

# solve for inputs
net.imagine(3)

# test the trained network
#net.test(test_data)

# save weights
net.save()
Beispiel #5
0
def train_ann_classifier(step_num, eta):
    raw_train_data = load_one_hot_data("./data/train.csv")

    feature_num = raw_train_data.shape[1] - 1
    hidden_node_num = 13
    label_num = 10
    batch_size = 50

    print "feature_num: %d" % feature_num
    print "hidden_node_num: %d" % hidden_node_num
    print "label_num: %d" % label_num
    print "batch_size: %d" % batch_size

    # load pre-trained weight and bias
    input_hidden_w = load_pre_train_weight("./model/input_hidden_w.bin",
                                           (feature_num, hidden_node_num))
    input_hidden_b = load_pre_train_weight("./model/input_hidden_b.bin",
                                           (1, hidden_node_num))
    hidden_output_w = load_pre_train_weight("./model/hidden_output_w.bin",
                                            (hidden_node_num, label_num))
    hidden_output_b = load_pre_train_weight("./model/hidden_output_b.bin",
                                            (1, label_num))

    # initialize simple ann
    ann_net = neural_net.Net(batch_size, feature_num, hidden_node_num,
                             label_num, input_hidden_w, input_hidden_b,
                             hidden_output_w, hidden_output_b)

    # train
    np.random.shuffle(raw_train_data)
    train_len = int(raw_train_data.shape[0] * 0.8)
    train_data, valid_data = raw_train_data[:train_len], raw_train_data[
        train_len:]
    valid_features, valid_labels = valid_data[:,
                                              1:] / 255.0, labels_to_one_hot(
                                                  valid_data[:, 0])

    for i in xrange(step_num):
        features_data, labels_data = gen_batch_data(train_data, batch_size)
        #start_t = time.time()
        ann_net.train(features_data, labels_data, eta)
        #print "%d batch cost time:  %d ms" % (i, int((time.time() - start_t)*1000))

        # print accuracy of every one epoch
        if (i + 1) == 1 or (i + 1) % 840 == 0 or (i + 1) == step_num:
            print "accuracy of %d batch (%d epoch): %f" % (
                (i + 1), (i + 1) / 840,
                ann_net.get_accuracy(valid_features, valid_labels))

    ann_net.input_hidden_w.tofile("./model/input_hidden_w.bin")
    ann_net.input_hidden_b.tofile("./model/input_hidden_b.bin")
    ann_net.hidden_output_w.tofile("./model/hidden_output_w.bin")
    ann_net.hidden_output_b.tofile("./model/hidden_output_b.bin")

    # test
    test_data = load_one_hot_data("./data/test.csv")
    predict_label = ann_net.predict(test_data / 255.0)
    predict_label = [np.arange(1, 1 + len(predict_label)), predict_label]
    predict_label = np.transpose(predict_label)
    np.savetxt('submission.csv',
               predict_label,
               fmt='%i,%i',
               header='ImageId,Label',
               comments='')
import neural_net
import mnist_loader
import time
import os.path

if os.path.isfile("../data/weights_file1"):
	network = neural_net.Net([784, 20, 30, 10])
	network.load()
	print("Network loaded.")
else:

	training_data, validation_data, test_data = mnist_loader.load_data_wrapper()
	#network = neural_net.Net([784, 30, 10])
	network = neural_net.Net([784, 20, 30, 10])
	network.load()
	print("Training network...")
	# Training takes O(n^2) time now (a really long time for the whole data set) because I wanted to be very explicit about how errors and weights were being calculated.
	start = time.time()
	network.train(training_data, 3.0)
	end = time.time()
	print("Training time:")
	print(end - start)
	print("Test network...")
	start = time.time()
	network.test(test_data)
	end = time.time()
	print("Test time:")
	print(end - start)

	network.save()
	print("Network successfully saved.")
Beispiel #7
0
import numpy as np
import neural_net as nn
import matplotlib.pyplot as plt

# Build fake data for y = 1 if (x > 5) else 0
# X in range [0,10]
X_train = np.random.random((100, 64, 1, 1)) * 10
X_test = np.random.random((1000, 1, 1)) * 10

# Calculate y values for each X
y_train = (X_train > 5).astype(int)
y_test = (X_test > 5).astype(int)

# Build and train the network
L = [1, 16, 16, 1]
A = [nn.sigmoid, nn.sigmoid, nn.sigmoid]
net = nn.Net(L, A)

net.train(X_train, y_train, X_test, y_test, 1000, nn.squared_error)

_, _, y_pred = net.forward(X_test)

plt.scatter(X_test.reshape(-1), y_pred.reshape(-1))
plt.show()