Beispiel #1
0
def test_nbr_neuron(list_test):
    color_list=['r','g','b','k','m','c','y']
    color_list *= 3
    k=0
    for i in list_test :
        my_layer1 = Layer.Linear(6,i)
        my_layer2 = ActivationFunctions.Tanh()
        my_layer5 = Layer.Linear(i,i)
        my_layer6 = ActivationFunctions.Tanh()
        my_layer3 = Layer.Linear(i,1)
        my_layer4 = ActivationFunctions.Sigmoid()
        my_NN = Neural_network.NeuralNet([my_layer1, my_layer2, my_layer5, my_layer6, my_layer3, my_layer4])
        
        
        chi2_list, error_list = User.train(my_NN, data_train_input, data_train_target, num_epochs = num_epoch_max, optimizer = Optimizer.SGD(lr = my_lr), batch_size=my_batch_size)
        
        data_test_prediction = User.prediction(my_NN,data_test_input)
        error_final = Error_round.error_round(data_test_prediction, data_test_target)

        plt.plot(range(num_epoch_max), error_list, label= str(i), c=color_list[k])
        plt.plot([num_epoch_max],[error_final], marker='o', c=color_list[k])
        plt.xlabel('Epoch')
        plt.ylabel('Training round error')
        
        k+=1
    plt.legend(title='Neurons')
    plt.title('Optimisation of the number of neurons')
    plt.show()
Beispiel #2
0
def test_nbr_layer(list_test, n_neuron):
    color_list=['r','g','b','k','m','c','y']
    color_list *= 3
    k=0
    
    my_layerini1 = Layer.Linear(6,n_neuron)
    my_layerini2 = ActivationFunctions.Tanh()
    my_layerfini1 = Layer.Linear(n_neuron,1)
    my_layerfini2 = ActivationFunctions.Sigmoid()
        
    for i in list_test :
        layers_new = [my_layerini1, my_layerini2]
        for j in range(i) :
            layers_new += [Layer.Linear(n_neuron,n_neuron),ActivationFunctions.Tanh()]
        layers_new += [my_layerfini1, my_layerfini2]
        my_NN = Neural_network.NeuralNet(layers_new)
        
        
        chi2_list, error_list = User.train(my_NN, data_train_input, data_train_target, num_epochs = num_epoch_max,optimizer = Optimizer.SGD(lr = my_lr), batch_size=my_batch_size)
        data_test_prediction = User.prediction(my_NN,data_test_input)
        
        error_final = Error_round.error_round(data_test_prediction, data_test_target)
        
        plt.plot(range(num_epoch_max), error_list, label= str(i),c=color_list[k])
        plt.plot([num_epoch_max],[error_final], marker='o', c=color_list[k])
        plt.xlabel('Epoch')
        plt.ylabel('Training round error')
        
        k+=1
    plt.legend(title='Hidden layers')
    plt.title('Optimisation of the number of hidden layers')
    plt.show()
Beispiel #3
0
def test_NeuralNet() :
    my_layer1 = Layer.Linear(3,2)
    my_layer2 = ActivationFunctions.Tanh()
    my_NN = Neural_network.NeuralNet([my_layer1,my_layer2])
    
    input = np.array([[1,2,3],[4,5,6]])
    grad =  np.array([[0.5,0.2],[0.1,0.3]])
    
    
    print('forward', my_NN.forward(input))
    print('backward', my_NN.backward(grad))
    '''OK'''
Beispiel #4
0
def test_train_prediction() :
    my_layer1 = Layer.Linear(3,2)
    my_layer2 = ActivationFunctions.Tanh()
    my_NN = Neural_network.NeuralNet([my_layer1,my_layer2])
    
    input = np.array([[1,2,3],[4,5,6]])
    target = np.array([[0.5,0.2],[0.1,0.3]])
    
    User.train(my_NN, input, target, batch_size = 1)
    #By careful, we must have size_training = number of rows in our data
    
    input_predict = np.array([[1,1,4],[0.5,2,4]])
    print(User.prediction(my_NN,input_predict))
    ''' OK '''
Beispiel #5
0
def test_XOR() :
    my_layer1 = Layer.Linear(2,3)
    my_layer2 = ActivationFunctions.Tanh()
    my_layer3 = Layer.Linear(3,1)
    my_layer4 = ActivationFunctions.Sigmoid()
    #my_layer3 = lib2.Arondi()
    my_NN = Neural_network.NeuralNet([my_layer1,my_layer2,my_layer3,my_layer4])
    
    input =np.array([[0, 0], [1, 0], [0, 1], [1, 1]])
    target = np.array([[0], [1], [1], [0]])
    
    User.train(my_NN, input, target, batch_size = 1,,num_epochs= 1000)
    # By careful, we must have size_training = number of rows in our data
    
    input_predict = np.array([[0, 0], [1, 0], [0, 1], [1, 1]])
    print(User.prediction(my_NN,input_predict))
    ''' OK '''
Beispiel #6
0
def predict(symbImgs, topology):
    # Flatten using knn first
    knn = kNN.kNN()
    flat_syms = knn.flatten_symbols(symbImgs)
    binary_symbs = preprocessor.binarize(flat_syms)
    flattened = logistic_regression.flatten(binary_symbs)
    knn.load_MNIST()
    m_data = logistic_regression.flatten(knn.mnist_data)
    m_labels = knn.mnist_labels
    nn = neural_network.NeuralNet(topology)
    print("> Fitting NN")
    m_labels = toArray(m_labels[:10000])
    nn.fit(m_data[:10000], m_labels)

    results = []
    print("> Predicting NN")
    for i in range(1, len(flattened) + 1):
        if i % 1000 == 0:
            print(i)
        results.append(nn.predict(flattened[i - 1:i]))
    return results
Beispiel #7
0
#script which generates prediction for the MNIST dataset

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import neural_network as nn
import sys
import os

sys.path.append(os.getcwd())
os.chdir("..")

data = np.array(pd.read_csv("mnist_train.csv"))
X = data[:, 1:]
Y = data[:, 0][:, np.newaxis]

os.chdir("neural-network")

model = nn.NeuralNet(hidden_size=60, n_labels=10, lamb=1, alpha=0.4)
theta1, theta2 = model.import_theta("weights_digits2.csv", X)
prediction, accuracy = model.predict(theta1, theta2, X, Y)

def show_pred():
    a = np.random.randint(60000)
    print("The predicted number is", prediction[a])
    fig, ax = plt.subplots()
    ax.imshow(X[a, :].reshape((28, 28)), cmap="Greys")
    plt.show()
Beispiel #8
0
#quitar la columna diagnosis y qrs
X = arch.drop(columns=['diagnosis'])

# reemplazaremos el diagnostico con 0 y 1 (0 no esta enfermo, 1 esta enfermo)
arch['diagnosis'] = arch['diagnosis'].replace(1, 0)
arch['diagnosis'] = arch['diagnosis'].replace(2, 1)

y_label = arch['diagnosis'].values.reshape(X.shape[0], 1)

# estandarizar el dataset
sc = StandardScaler()
sc.fit(X)

X = sc.transform(X)
nn = neural_network.NeuralNet()
nn.entrenar(X, y_label)

#predecir
result = nn.predecir(X)
print(result)

precistion = nn.exactitud(y_label, result)

# verificar que se paresca
print("procentaje de precision", float(precistion), "%")
result = nn.predecir(X)

print(
    "-----------------------------------------------------------------------------------------------------------:"
)
Beispiel #9
0
def train_simultaneousNN(
        inputs_train: Tensor,
        targets_train: Tensor,
        loss: Loss.Loss = Loss.MeanSquareError(),
        optimizer: OptimizerClass.Optimizer = OptimizerClass.SGD(),
        num_epochs: int = 5000,
        batch_size: int = 32) -> tuple:

    size_training = inputs_train.shape[0]
    Result_chi2 = [[], [], [], [], [], [], [], [], []]
    list_epoch = np.array(range(10, 50, 5)) / 100 * num_epochs
    '''initialisation des 9 NN'''  #verifier question seed()
    list_net = []
    for i in range(9):
        layers = []
        layers.append(Layer.Linear(6, 4))
        layers.append(ActivationFunctions.Tanh())
        layers.append(Layer.Linear(4, 2))
        layers.append(ActivationFunctions.Tanh())
        layers.append(Layer.Linear(2, 1))
        layers.append(ActivationFunctions.Sigmoid())
        list_net.append(Neural_network.NeuralNet(layers))

    destroyed_NN = []
    nbr_batch = size_training // batch_size
    ''' training des 9 NN'''
    for epoch in range(num_epochs):

        for k in range(9):
            if k not in destroyed_NN:
                Chi2_train = 0

                for i in range(0, size_training, batch_size):

                    # 1) feed forward
                    y_actual = list_net[k].forward(inputs_train[i:i +
                                                                batch_size])

                    # 2) compute the loss and the gradients
                    Chi2_train += loss.loss(targets_train[i:i + batch_size],
                                            y_actual)
                    grad_ini = loss.grad(targets_train[i:i + batch_size],
                                         y_actual)

                    # 3)feed backwards
                    grad_fini = list_net[k].backward(grad_ini)

                    # 4) update the net
                    optimizer.step(list_net[k], n_epoch=epoch)

                Chi2_train = Chi2_train / nbr_batch
                Result_chi2[k].append(Chi2_train)
        '''Supression du NN le moins efficace '''
        if epoch in list_epoch:
            Comparaison = [[], []]
            for k in range(9):
                if k not in destroyed_NN:
                    ErrorSlope = np.polyfit(np.array(range(epoch - 49, epoch)),
                                            Result_chi2[k][-50:-1], 1)[0]
                    MixedError = Result_chi2[k][-1] * (1 -
                                                       np.arctan(ErrorSlope) /
                                                       (np.pi / 2))
                    Comparaison[0].append(k)
                    Comparaison[1].append(MixedError)

            k = Comparaison[0][Comparaison[1].index(max(Comparaison[1]))]
            destroyed_NN.append(k)

        if epoch % 100 == 0:
            print('epoch : ' + str(epoch) + "/" + str(num_epochs) + "\r",
                  end="")

    for k in range(9):
        if k not in destroyed_NN:
            my_NN = list_net[k]
    return my_NN, Result_chi2
Beispiel #10
0
    x = x.astype(float)
    means, sd = NN.get_moments(x)
    x = NN.standardize(x, means, sd)

    #x = x/255

    x_test = np.delete(x_test, np.s_[:1], 1)
    x_test = np.transpose(x_test)

    x_dim = x.shape
    t = np.zeros((10, x_dim[1]))
    arange = np.arange(x_dim[1])
    t[truth, arange] = 1
    print(t)

    nn = NN.NeuralNet(nHidUnits, nInputs, nOutputU)

    # weights = initWeights(nHidUnits,nInputs,nOutputU)
    # w_trained = train(x,weights,nHidLay,t,sigmoid_,softmax_,600,0.1)
    # predict(x_test, w_trained, nHidLay, sigmoid_pos, softmax_, truth_test)

    #print(weights[0])
    for seg in range(1, 9):
        startI = int((seg - 1) * 0.2 * x_dim[1])
        endI = int(seg * 0.2 * x_dim[1])
        trainX = np.concatenate((x[:, :startI], x[:, endI:]), axis=1)
        trainTruth = np.concatenate((t[:, :startI], t[:, endI:]), axis=1)

        nn.train(trainX, trainTruth, NN.sigmoid_, NN.softmax_, 400, 0.1)
        #print(w_trained[0])
Beispiel #11
0
my_initial_lr = 0.1
my_decay_coeff = 1 / 200
'''Construction of the neural network '''
my_layer1 = Layer.Linear(6, 5)
my_layer2 = ActivationFunctions.Tanh()
my_layer3 = Layer.Linear(5, 4)
my_layer4 = ActivationFunctions.Tanh()
my_layer5 = Layer.Linear(4, 3)
my_layer6 = ActivationFunctions.Tanh()
my_layer7 = Layer.Linear(3, 2)
my_layer8 = ActivationFunctions.Tanh()
my_layer9 = Layer.Linear(2, 1)
my_layer10 = ActivationFunctions.Sigmoid()
my_NN = Neural_network.NeuralNet([
    my_layer1, my_layer2, my_layer3, my_layer4, my_layer5, my_layer6,
    my_layer7, my_layer8, my_layer9, my_layer10
])

## Importation of the training and testing data
os.chdir(path_ini[:-4])

data_training_path = 'Data/data_train.csv'
data_test_path = 'Data/data_test.csv'

Data_train = pd.read_csv(data_training_path)
Data_test = pd.read_csv(data_test_path)

param = ['cosTBz', 'R2', 'chiProb', 'Ks_distChi', 'm_KSpipi_norm', 'Mbc_norm']
'''training set'''
data_train_input = np.array(Data_train[param][:train_size])
data_train_target = np.array(Data_train[['isSignal']][:train_size])
import Neural_Network_Library.user as User
'''

plt.close()

# Parameters' choice
'''seed '''
np.random.seed(1)
'''Construction of the neural network '''
my_layer1 = Layer.Linear(6, 4)
my_layer2 = ActivationFunctions.Tanh()
my_layer5 = Layer.Linear(4, 2)
my_layer6 = ActivationFunctions.Tanh()
my_layer3 = Layer.Linear(2, 1)
my_layer4 = ActivationFunctions.Sigmoid()
my_NN = Neural_network.NeuralNet(
    [my_layer1, my_layer2, my_layer5, my_layer6, my_layer3, my_layer4])
'''Maximal number of epochs '''
Nmax = 50000
'''size of the training set and the testing set '''
train_size = 3000
test_size = 1500
'''size of the batch'''
my_batch_size = 100
''' learning rate'''
my_lr = 0.0005
'''importation of the training and testing data'''

os.chdir(path_ini[:-12])  #changement ici
Data_train = pd.read_csv('Data/data_train.csv')
Data_test = pd.read_csv('Data/data_test.csv')