Beispiel #1
0
with open(lab_file, 'rb') as handle:
    lab = pickle.load(handle)

with open(lab_file_dev, 'rb') as handle:
    lab_dev = pickle.load(handle)
    

# Network initialization
nnet=MLP(options,inp_dim)

nnet.to(device)

cost=nn.NLLLoss()

# Optimizer initialization
optimizer = optim.SGD(nnet.parameters(), lr=lr, momentum=0.0)

# Seeds initialization
np.random.seed(seed)
torch.manual_seed(seed)

# Batch creation (train)
fea_lst=[]
lab_lst=[]

print("Data Preparation...")
for snt in fea_pase.keys():
    if fea_pase[snt].shape[0]-lab[snt].shape[0]!=2:
        if fea_pase[snt].shape[0]-lab[snt].shape[0]==3:
            fea_lst.append(fea_pase[snt][:-3])
            lab_lst.append(lab[snt])
Beispiel #2
0
# Computing pase features for test
fea_pase_dev = {}
for snt_id in fea_dev.keys():
    fea_pase_dev[snt_id] = pase(fea_dev[snt_id]).detach()
    fea_pase_dev[snt_id] = fea_pase_dev[snt_id].view(
        fea_pase_dev[snt_id].shape[1],
        fea_pase_dev[snt_id].shape[2]).transpose(0, 1)

# Network initialization
nnet = MLP(options, inp_dim)
nnet.to(device)
cost = nn.NLLLoss()

# Optimizer initialization
optimizer = optim.SGD(list(nnet.parameters()) + list(pase.parameters()),
                      lr=lr,
                      momentum=0.0)

# Seeds initialization
np.random.seed(seed)
torch.manual_seed(seed)

# Batch creation (train)
fea_lst = []
lab_lst = []

print("Data Preparation...")
for snt in fea_pase.keys():
    fea_lst.append(fea_pase[snt])
    lab_lst.append(