Beispiel #1
0
    def _flush_metrics(self) -> None:
        """
        Flush metrics files
        """
        with open(self._get_file_name(True), 'w') as out:
            json.dump(self._storage, out)

        if self._final_metrics_file is not None:
            res = dict_recursive_bypass(self._storage, lambda v: v[-1])
            with open(self._final_metrics_file, 'w') as out:
                json.dump(res, out)
Beispiel #2
0
    def test_dict_recursive_bypass(self):
        d = {
            'data': np.array([1]),
            'target': {
                'a': np.array([1]),
                'b': np.array([1])
            }
        }
        d = dict_recursive_bypass(d, lambda v: torch.from_numpy(v))

        self.assertTrue(isinstance(d['data'], Tensor))
        self.assertTrue(isinstance(d['target']['a'], Tensor))
        self.assertTrue(isinstance(d['target']['b'], Tensor))
Beispiel #3
0
 def _pass_data_to_device(self, data) -> torch.Tensor or dict:
     """
     Internal method, that pass data to specified device
     :param data: data as any object type. If will passed to device if it's instance of :class:`torch.Tensor` or dict with key
     ``data``. Otherwise data will be doesn't changed
     :return: processed on target device
     """
     if isinstance(data, dict):
         return dict_recursive_bypass(data, lambda v: v.to(self._device))
     elif isinstance(data, torch.Tensor):
         return data.to(self._device)
     else:
         return data