def test_forward_case1(self):
        # Render Chainer version
        target_num = 2

        vertices, faces = neural_renderer_chainer.load_obj(
            './tests_torch/data/teapot.obj')
        vertices_batch = np.tile(vertices[None, :, :], (4, 1, 1)) * 0
        vertices_batch[target_num] = vertices
        vertices, faces = neural_renderer_chainer.to_gpu(
            (vertices_batch, faces))
        renderer = neural_renderer_chainer.Renderer()
        renderer.anti_aliasing = False
        renderer.viewpoints = neural_renderer_chainer.get_points_from_angles(
            2.732, 0, 0)
        images_chainer = renderer.render_silhouettes(vertices,
                                                     faces).data[target_num]

        target_num = 2
        vertices, faces = neural_renderer_torch.load_obj(
            './tests_torch/data/teapot.obj')
        vertices_batch = np.tile(vertices[None, :, :], (4, 1, 1)) * 0
        vertices_batch[target_num] = vertices
        vertices, faces = neural_renderer_torch.to_gpu((vertices_batch, faces))

        renderer = neural_renderer_torch.Renderer()
        renderer.anti_aliasing = False
        renderer.viewpoints = neural_renderer_torch.get_points_from_angles(
            2.732, 0, 0)
        images_pytorch = renderer.render_silhouettes(vertices,
                                                     faces).data[target_num]

        np.testing.assert_allclose(images_pytorch.cpu().numpy(),
                                   images_chainer.get(),
                                   atol=2e-3)
    def test_backward_case1(self):
        vertices = [
            [0.1, 0.1, 1.],
            [-0.1, 0.1, 1.],
            [-0.1, -0.1, 1.],
            [0.1, -0.1, 1.],
        ]
        faces = [[0, 1, 2], [0, 2, 3]]

        ref = neural_renderer_torch.imread('./tests_torch/data/gradient.png')
        ref = 1 - ref
        ref = ref[:, :, 0]
        ref = torch.as_tensor(ref).cuda()

        vertices = np.array(vertices, 'float32')
        faces = np.array(faces, 'int32')
        vertices, faces = neural_renderer_torch.to_gpu((vertices, faces))
        vertices = Parameter(vertices, True)
        faces = torch.as_tensor(faces)

        optimizer = torch.optim.Adam([vertices], lr=0.005)
        ref = torch.as_tensor(ref)

        os.makedirs("tmp", exist_ok=True)

        for i in range(350):
            params = RasterizeParam()
            hyperparams = RasterizeHyperparam(image_size=256,
                                              anti_aliasing=False)
            images = neural_renderer_torch.rasterize_silhouettes(
                vertices[None, :, :], faces, params, hyperparams)

            image = images[0]
            iou = torch.sum(image * ref) / torch.sum(image + ref - image * ref)
            iou = torch.as_tensor(1, dtype=torch.float32,
                                  device=iou.device) - iou
            loss = iou

            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            pylab.imsave('tmp/t%d.png' % i, image.data.cpu().numpy())
            print(i, loss.data, iou.data)

            if float(iou.data) < 0.01:
                return
        raise Exception
    def test_forward_case2(self):
        data = [
            [
                './tests_torch/data/4e49873292196f02574b5684eaec43e9/model.obj',
                neural_renderer_torch.get_points_from_angles(2.5, 10, -90),
                './tests_torch/data/4e49873292196f02574b5684eaec43e9.png',
            ],
            [
                './tests_torch/data/1cde62b063e14777c9152a706245d48/model.obj',
                neural_renderer_torch.get_points_from_angles(2.5, 10, 60),
                './tests_torch/data/1cde62b063e14777c9152a706245d48.png',
            ]
        ]

        for i, (filename, viewpoint, reference) in enumerate(data):
            # Render Chainer
            renderer = neural_renderer_chainer.Renderer()
            renderer.draw_backside = False
            renderer.viewpoints = viewpoint
            vertices, faces, vertices_t, faces_t, textures = neural_renderer_chainer.load_obj(
                filename, load_textures=True)
            vertices, faces, vertices_t, faces_t, textures = neural_renderer_chainer.to_gpu(
                (vertices[None, :, :], faces, vertices_t[None, :, :], faces_t,
                 textures[None, :, :, :]))
            images = renderer.render(vertices, faces, vertices_t, faces_t,
                                     textures).data
            image_chainer = images[0].transpose((1, 2, 0)).get()

            # Render PyTorch
            renderer = neural_renderer_torch.Renderer()
            renderer.draw_backside = False
            renderer.viewpoints = viewpoint
            vertices, faces, vertices_t, faces_t, textures = neural_renderer_torch.load_obj(
                filename, load_textures=True)
            vertices, faces, vertices_t, faces_t, textures = neural_renderer_torch.to_gpu(
                (vertices[None, :, :], faces, vertices_t[None, :, :], faces_t,
                 textures[None, :, :, :]))

            images = renderer.render(vertices, faces, vertices_t, faces_t,
                                     textures)
            images = images.cpu().numpy()
            image_pytorch = images[0].transpose((1, 2, 0))

            assert np.mean(np.abs(image_chainer - image_pytorch)) < 1e-4
Beispiel #4
0
    def test_case1(self):
        data = [
            [
                './tests_chainer/data/4e49873292196f02574b5684eaec43e9/model.obj',
                neural_renderer_torch.get_points_from_angles(2.5, 10, -90),
                './tests_chainer/data/4e49873292196f02574b5684eaec43e9.png',
            ],
            [
                './tests_chainer/data/1cde62b063e14777c9152a706245d48/model.obj',
                neural_renderer_torch.get_points_from_angles(2.5, 10, 60),
                './tests_chainer/data/1cde62b063e14777c9152a706245d48.png',
            ]
        ]
        filename_tmp = './tests_chainer/data/tmp.obj'

        renderer = neural_renderer_torch.Renderer()
        renderer.draw_backside = False
        for i, (filename, viewpoint, reference) in enumerate(data):
            renderer.viewpoints = viewpoint
            ref = neural_renderer_torch.imread(reference)

            vertices, faces, vertices_t, faces_t, textures = neural_renderer_torch.load_obj(
                filename, load_textures=True)
            neural_renderer_torch.save_obj(filename_tmp, vertices, faces,
                                           vertices_t, faces_t, textures)
            vertices, faces, vertices_t, faces_t, textures = neural_renderer_torch.load_obj(
                filename_tmp, load_textures=True)
            vertices, faces, vertices_t, faces_t, textures = neural_renderer_torch.to_gpu(
                (vertices[None, :, :], faces, vertices_t[None, :, :], faces_t,
                 textures[None, :, :, :]))

            images = renderer.render(vertices, faces, vertices_t, faces_t,
                                     textures).data
            image = images[0].transpose((1, 2, 0))

            chainer.testing.assert_allclose(ref, image, atol=1e-2, rtol=1e-2)

        for f in glob.glob('./tests_chainer/data/tmp*'):
            os.remove(f)
    def test_forward_case3(self):
        # Render with Chainer
        target_num = 2
        vertices, faces = neural_renderer_chainer.load_obj(
            './tests_torch/data/teapot.obj')
        vertices_batch = np.tile(vertices[None, :, :], (4, 1, 1)) * 0
        vertices_batch[target_num] = vertices
        vertices, faces = neural_renderer_chainer.to_gpu(
            (vertices_batch, faces))

        renderer = neural_renderer_chainer.Renderer()
        renderer.anti_aliasing = False
        renderer.viewpoints = neural_renderer_chainer.get_points_from_angles(
            2, 30., 0)
        images = renderer.render_depth(vertices, faces).data[target_num]
        images_chainer = (images - images.min()) / (images.max() -
                                                    images.min())
        images_chainer = images_chainer.get()

        # Render with PyTorch
        target_num = 2
        vertices, faces = neural_renderer_torch.load_obj(
            './tests_torch/data/teapot.obj')
        vertices_batch = np.tile(vertices[None, :, :], (4, 1, 1)) * 0
        vertices_batch[target_num] = vertices
        vertices, faces = neural_renderer_torch.to_gpu((vertices_batch, faces))

        renderer = neural_renderer_torch.Renderer()
        renderer.anti_aliasing = False
        renderer.viewpoints = neural_renderer_torch.get_points_from_angles(
            2, 30., 0)
        images = renderer.render_depth(vertices, faces).data[target_num]
        images_pytorch = (images - images.min()) / (images.max() -
                                                    images.min())
        images_pytorch = images_pytorch.cpu().numpy()

        assert np.mean(np.abs(images_pytorch - images_chainer)) < 1e-4
Beispiel #6
0
    def test_backward(self):
        images = np.random.normal(size=(10, 32, 32, 3)).astype('float32')

        x = np.tile(
            np.arange(32).astype('float32')[None, None, :, None],
            (10, 32, 1, 1))
        y = np.tile(
            np.arange(32).astype('float32')[None, :, None, None],
            (10, 1, 32, 1))

        coordinates = np.concatenate((x, y), axis=-1)
        coordinates = ((coordinates / 31) * 2 - 1) * 31. / 32.

        noise = np.random.normal(size=(10, 32, 32, 3)).astype('float32')
        step = 2 / 32.

        images = neural_renderer_torch.to_gpu(images)
        coordinates = torch.tensor(coordinates,
                                   device=images.device,
                                   requires_grad=True)
        noise = neural_renderer_torch.to_gpu(noise)

        loss = torch.sum(
            neural_renderer_torch.differentiation(images, coordinates) * noise)
        loss.backward()

        grad_coordinates = coordinates.grad

        for i in range(100):
            yi = np.random.randint(1, 31)
            xi = np.random.randint(1, 31)

            images_yb = images.clone()
            images_yb[:, yi - 1, xi] = images[:, yi, xi].clone()
            images_yb[:, yi, xi] = images[:, yi + 1, xi].clone()
            grad_yb = ((images_yb - images) * noise).sum((1, 2, 3)) / step
            grad_yb = torch.min(grad_yb, torch.zeros_like(grad_yb))

            images_yt = images.clone()
            images_yt[:, yi + 1, xi] = images[:, yi, xi].clone()
            images_yt[:, yi, xi] = images[:, yi - 1, xi].clone()
            grad_yt = ((images_yt - images) * noise).sum((1, 2, 3)) / step
            grad_yt = torch.min(grad_yt, torch.zeros_like(grad_yt))

            grad_y_abs = torch.max(torch.abs(grad_yb), torch.abs(grad_yt))

            assert torch.allclose(grad_y_abs,
                                  torch.abs(grad_coordinates[:, yi, xi, 1]),
                                  rtol=1e-04,
                                  atol=0)

            images_xl = images.clone()
            images_xl[:, yi, xi - 1] = images[:, yi, xi].clone()
            images_xl[:, yi, xi] = images[:, yi, xi + 1].clone()
            grad_xl = ((images_xl - images) * noise).sum((1, 2, 3)) / step
            grad_xl = torch.min(grad_xl, torch.zeros_like(grad_xl))

            images_xr = images.clone()
            images_xr[:, yi, xi + 1] = images[:, yi, xi].clone()
            images_xr[:, yi, xi] = images[:, yi, xi - 1].clone()
            grad_xr = ((images_xr - images) * noise).sum((1, 2, 3)) / step
            grad_xr = torch.min(grad_xr, torch.zeros_like(grad_xr))

            grad_x_abs = torch.max(torch.abs(grad_xl), torch.abs(grad_xr))

            assert torch.allclose(grad_x_abs,
                                  torch.abs(grad_coordinates[:, yi, xi, 0]),
                                  rtol=1e-04,
                                  atol=0)
    def test_forward_case4(self):
        # Render with Chainer

        target_num = 2
        vertices, faces = neural_renderer_chainer.load_obj(
            './tests_torch/data/teapot.obj')
        vertices_batch = np.tile(vertices[None, :, :], (4, 1, 1)) * 0
        vertices_batch[target_num] = vertices
        vertices, faces = neural_renderer_chainer.to_gpu(
            (vertices_batch, faces))
        vertices_t, faces_t, textures = neural_renderer_chainer.create_textures(
            faces.shape[0])
        vertices_t = chainer.functions.tile(vertices_t[None, :, :],
                                            (4, 1, 1)).data
        textures = chainer.functions.tile(textures[None, :, :, :],
                                          (4, 1, 1, 1)).data
        vertices_t = chainer.cuda.to_gpu(vertices_t)
        faces_t = chainer.cuda.to_gpu(faces_t)
        textures = chainer.cuda.to_gpu(textures)

        lights = []
        light_color = cp.asarray([[0.47481096, 0.7131511, 0.4510043],
                                  [0.49120015, 0.161955, 0.71638113],
                                  [0.32655084, 0.7805874, 0.7682426],
                                  [0.42193118, 0.90416473,
                                   0.5267034]]).astype(cp.float32)
        light_direction = cp.asarray([[0.328245, 0.8916046, 0.31189483],
                                      [0.99824226, 0.05838178, 0.00867782],
                                      [0.35747865, 0.61983925, 0.6985467],
                                      [0.0393897, 0.6937492,
                                       0.7191179]]).astype(cp.float32)
        lights.append(
            neural_renderer_chainer.DirectionalLight(light_color,
                                                     light_direction))

        light_color = cp.asarray([[0.2732121, 0.09439224, 0.38380036],
                                  [0.06487979, 0.02794903, 0.261018],
                                  [0.28739947, 0.2996951, 0.42412606],
                                  [0.10019363, 0.26517034,
                                   0.07372955]]).astype(cp.float32)
        lights.append(neural_renderer_chainer.AmbientLight(light_color))

        light_color = cp.asarray([[0.32410273, 0.24369295, 0.3126097],
                                  [0.3456873, 0.24514836, 0.21663068],
                                  [0.33004418, 0.25533527, 0.48039845],
                                  [0.29468802, 0.44377372,
                                   0.10724097]]).astype(cp.float32)
        lights.append(neural_renderer_chainer.SpecularLight(light_color))

        renderer = neural_renderer_chainer.Renderer()
        renderer.viewpoints = neural_renderer_chainer.get_points_from_angles(
            2.732, 30, 30)
        renderer.draw_backside = False
        images_chainer = renderer.render_rgb(vertices,
                                             faces,
                                             vertices_t,
                                             faces_t,
                                             textures,
                                             lights=lights).data[target_num]
        images_chainer = images_chainer.get()

        # Render with PyTorch
        target_num = 2
        vertices, faces = neural_renderer_torch.load_obj(
            './tests_torch/data/teapot.obj')
        vertices_batch = np.tile(vertices[None, :, :], (4, 1, 1)) * 0
        vertices_batch[target_num] = vertices
        vertices, faces = neural_renderer_torch.to_gpu((vertices_batch, faces))
        vertices_t, faces_t, textures = neural_renderer_torch.create_textures(
            faces.shape[0])
        vertices_t = torch.as_tensor(vertices_t[None, :, :]).expand(
            (4, *vertices_t.shape))
        faces_t = torch.as_tensor(faces_t)
        textures = torch.as_tensor(textures[None, :, :, :]).expand(
            (4, *textures.shape))
        vertices_t = vertices_t.cuda()
        faces_t = faces_t.cuda()
        textures = textures.cuda()

        lights = []

        light_color = torch.as_tensor([[0.47481096, 0.7131511, 0.4510043],
                                       [0.49120015, 0.161955, 0.71638113],
                                       [0.32655084, 0.7805874, 0.7682426],
                                       [0.42193118, 0.90416473,
                                        0.5267034]]).type(torch.float32)
        light_direction = torch.as_tensor(
            [[0.328245, 0.8916046, 0.31189483],
             [0.99824226, 0.05838178, 0.00867782],
             [0.35747865, 0.61983925, 0.6985467],
             [0.0393897, 0.6937492, 0.7191179]]).type(torch.float32)
        lights.append(
            neural_renderer_torch.DirectionalLight(light_color,
                                                   light_direction))

        light_color = torch.as_tensor([[0.2732121, 0.09439224, 0.38380036],
                                       [0.06487979, 0.02794903, 0.261018],
                                       [0.28739947, 0.2996951, 0.42412606],
                                       [0.10019363, 0.26517034,
                                        0.07372955]]).type(torch.float32)
        lights.append(neural_renderer_torch.AmbientLight(light_color))

        light_color = torch.as_tensor([[0.32410273, 0.24369295, 0.3126097],
                                       [0.3456873, 0.24514836, 0.21663068],
                                       [0.33004418, 0.25533527, 0.48039845],
                                       [0.29468802, 0.44377372,
                                        0.10724097]]).type(torch.float32)
        lights.append(neural_renderer_torch.SpecularLight(light_color))

        renderer = neural_renderer_torch.Renderer()
        renderer.viewpoints = neural_renderer_torch.get_points_from_angles(
            2.732, 30, 30)
        renderer.draw_backside = False
        images = renderer.render_rgb(vertices,
                                     faces,
                                     vertices_t,
                                     faces_t,
                                     textures,
                                     lights=lights).data[target_num]
        images_pytorch = images.cpu().numpy()

        assert np.mean(np.abs(images_pytorch - images_chainer)) < 1e-4