def __init__(self, base_model, graph_reg_config=None):
        """Class initializer.

    Args:
      base_model: Unregularized model to which the loss term resulting from
        graph regularization will be added.
      graph_reg_config: Instance of `GraphRegConfig` that contains configuration
        for graph regularization.
    """

        super(GraphRegularization, self).__init__(name='GraphRegularization')
        self.base_model = base_model
        self.graph_reg_config = (nsl_configs.GraphRegConfig()
                                 if graph_reg_config is None else
                                 graph_reg_config)
        self.nbr_features_layer = nsl_layers.NeighborFeatures(
            self.graph_reg_config.neighbor_config)
        self.regularizer = nsl_layers.PairwiseDistance(
            self.graph_reg_config.distance_config, name='graph_loss')
Beispiel #2
0
        def _create_and_compile_graph_reg_model(model_fn, weight,
                                                max_neighbors):
            """Creates and compiles a graph regularized model.

      Args:
        model_fn: A function that builds a linear regression model.
        weight: Initial value for the weights variable in the linear regressor.
        max_neighbors: The maximum number of neighbors for graph regularization.

      Returns:
        A pair containing the unregularized model and the graph regularized
        model as `tf.keras.Model` instances.
      """
            model = model_fn((2, ), weight)
            graph_reg_config = configs.GraphRegConfig(
                configs.GraphNeighborConfig(max_neighbors=max_neighbors),
                multiplier=1)
            graph_reg_model = graph_regularization.GraphRegularization(
                model, graph_reg_config)
            graph_reg_model.compile(
                optimizer=keras.optimizers.SGD(LEARNING_RATE), loss='MSE')
            return model, graph_reg_model
def add_graph_regularization(estimator,
                             embedding_fn,
                             optimizer_fn=None,
                             graph_reg_config=None):
    """Adds graph regularization to a `tf.estimator.Estimator`.

  Args:
    estimator: An object of type `tf.estimator.Estimator`.
    embedding_fn: A function that accepts the input layer (dictionary of feature
      names and corresponding batched tensor values) as its first argument,
      an instance of `tf.estimator.ModeKeys` as its second argument to indicate
      if the mode is training, evaluation, or prediction, and an optional third
      argument named `params` which is a `dict` similar to the `params` argument
      of `tf.estimator.Estimator`'s `model_fn`, and returns the corresponding
      embeddings or logits to be used for graph regularization. The `params`
      argument will receive what was passed to `estimator` at the time of its
      creation as its `params` argument.
    optimizer_fn: A function that accepts no arguments and returns an instance
      of `tf.train.Optimizer`.
    graph_reg_config: An instance of `nsl.configs.GraphRegConfig` that specifies
      various hyperparameters for graph regularization.

  Returns:
    A modified `tf.estimator.Estimator` object with graph regularization
    incorporated into its loss.
  """

    if not graph_reg_config:
        graph_reg_config = configs.GraphRegConfig()

    base_model_fn = estimator._model_fn  # pylint: disable=protected-access
    try:
        base_model_fn_args = inspect.signature(base_model_fn).parameters.keys()
    except AttributeError:  # For Python 2 compatibility
        base_model_fn_args = inspect.getargspec(base_model_fn).args  # pylint: disable=deprecated-method

    def graph_reg_model_fn(features, labels, mode, params=None, config=None):
        """The graph-regularized model function.

    Args:
      features: This is the first item returned from the `input_fn` passed to
        `train`, `evaluate`, and `predict`. This should be a dictionary
        containing sample features as well as corresponding neighbor features
        and neighbor weights.
      labels: This is the second item returned from the `input_fn` passed to
        `train`, `evaluate`, and `predict`. This should be a single `Tensor` or
        `dict` of same (for multi-head models). If mode is
        `tf.estimator.ModeKeys.PREDICT`, `labels=None` will be passed. If the
        `model_fn`'s signature does not accept `mode`, the `model_fn` must still
        be able to handle `labels=None`.
      mode: Optional. Specifies if this is training, evaluation, or prediction.
        See `tf.estimator.ModeKeys`.
      params: Optional `dict` of hyperparameters. Will receive what is passed to
        Estimator in the `params` parameter. This allows users to configure
        Estimators from hyper parameter tuning.
      config: Optional `tf.estimator.RunConfig` object. Will receive what is
        passed to Estimator as its `config` parameter, or a default value.
        Allows setting up things in the `model_fn` based on configuration such
        as `num_ps_replicas`, or `model_dir`. Unused currently.

    Returns:
      A `tf.estimator.EstimatorSpec` with graph regularization.
    """
        # Parameters 'params' and 'config' are optional. If they are not passed,
        # then it is possible for base_model_fn not to accept these arguments.
        # See documentation for tf.estimator.Estimator for additional context.
        kwargs = {'mode': mode}
        embedding_fn_kwargs = dict()
        if 'params' in base_model_fn_args:
            kwargs['params'] = params
            embedding_fn_kwargs['params'] = params
        if 'config' in base_model_fn_args:
            kwargs['config'] = config

        # Uses the same variable scope for calculating the original objective and
        # the graph regularization loss term.
        with tf.compat.v1.variable_scope(tf.compat.v1.get_variable_scope(),
                                         reuse=tf.compat.v1.AUTO_REUSE,
                                         auxiliary_name_scope=False):
            nbr_features = dict()
            nbr_weights = None
            if mode == tf.estimator.ModeKeys.TRAIN:
                # Extract sample features, neighbor features, and neighbor weights if we
                # are in training mode.
                sample_features, nbr_features, nbr_weights = (
                    utils.unpack_neighbor_features(
                        features, graph_reg_config.neighbor_config))
            else:
                # Otherwise, we strip out all neighbor features and use just the
                # sample's features.
                sample_features = utils.strip_neighbor_features(
                    features, graph_reg_config.neighbor_config)

            base_spec = base_model_fn(sample_features, labels, **kwargs)

            has_nbr_inputs = nbr_weights is not None and nbr_features

            # Graph regularization happens only if all the following conditions are
            # satisfied:
            # - the mode is training
            # - neighbor inputs exist
            # - the graph regularization multiplier is greater than zero.
            # So, return early if any of these conditions is false.
            if (not has_nbr_inputs or mode != tf.estimator.ModeKeys.TRAIN
                    or graph_reg_config.multiplier <= 0):
                return base_spec

            # Compute sample embeddings.
            sample_embeddings = embedding_fn(sample_features, mode,
                                             **embedding_fn_kwargs)

            # Compute the embeddings of the neighbors.
            nbr_embeddings = embedding_fn(nbr_features, mode,
                                          **embedding_fn_kwargs)

            replicated_sample_embeddings = utils.replicate_embeddings(
                sample_embeddings,
                graph_reg_config.neighbor_config.max_neighbors)

            # Compute the distance between the sample embeddings and each of their
            # corresponding neighbor embeddings.
            graph_loss = distances.pairwise_distance_wrapper(
                replicated_sample_embeddings,
                nbr_embeddings,
                weights=nbr_weights,
                distance_config=graph_reg_config.distance_config)
            scaled_graph_loss = graph_reg_config.multiplier * graph_loss
            tf.compat.v1.summary.scalar('loss/scaled_graph_loss',
                                        scaled_graph_loss)

            supervised_loss = base_spec.loss
            tf.compat.v1.summary.scalar('loss/supervised_loss',
                                        supervised_loss)

            total_loss = supervised_loss + scaled_graph_loss

            if not optimizer_fn:
                # Default to Adagrad optimizer, the same as the canned DNNEstimator.
                optimizer = tf.compat.v1.train.AdagradOptimizer(
                    learning_rate=0.05)
            else:
                optimizer = optimizer_fn()
            train_op = optimizer.minimize(
                loss=total_loss,
                global_step=tf.compat.v1.train.get_global_step())
            update_ops = tf.compat.v1.get_collection(
                tf.compat.v1.GraphKeys.UPDATE_OPS)
            if update_ops:
                train_op = tf.group(train_op, *update_ops)

        return base_spec._replace(loss=total_loss, train_op=train_op)

    # Replaces the model_fn while keeping other fields/methods in the estimator.
    estimator._model_fn = graph_reg_model_fn  # pylint: disable=protected-access
    return estimator
def add_graph_regularization(estimator,
                             embedding_fn,
                             optimizer_fn=None,
                             graph_reg_config=None):
  """Adds graph regularization to a `tf.estimator.Estimator`.

  Args:
    estimator: An object of type `tf.estimator.Estimator`.
    embedding_fn: A function that accepts the input layer (dictionary of feature
      names and corresponding batched tensor values) as its first argument and
      an instance of `tf.estimator.ModeKeys` as its second argument to indicate
      if the mode is training, evaluation, or prediction, and returns the
      corresponding embeddings or logits to be used for graph regularization.
    optimizer_fn: A function that accepts no arguments and returns an instance
      of `tf.train.Optimizer`.
    graph_reg_config: An instance of `nsl.configs.GraphRegConfig` that specifies
      various hyperparameters for graph regularization.

  Returns:
    A modified `tf.estimator.Estimator` object with graph regularization
    incorporated into its loss.
  """

  if not graph_reg_config:
    graph_reg_config = configs.GraphRegConfig()

  base_model_fn = estimator._model_fn  # pylint: disable=protected-access

  def graph_reg_model_fn(features, labels, mode, params=None, config=None):
    """The graph-regularized model function.

    Args:
      features: This is the first item returned from the `input_fn` passed to
        `train`, `evaluate`, and `predict`. This should be a dictionary
        containing sample features as well as corresponding neighbor features
        and neighbor weights.
      labels: This is the second item returned from the `input_fn` passed to
        `train`, `evaluate`, and `predict`. This should be a single `Tensor` or
        `dict` of same (for multi-head models). If mode is
        `tf.estimator.ModeKeys.PREDICT`, `labels=None` will be passed. If the
        `model_fn`'s signature does not accept `mode`, the `model_fn` must still
        be able to handle `labels=None`.
      mode: Optional. Specifies if this is training, evaluation, or prediction.
        See `tf.estimator.ModeKeys`.
      params: Optional `dict` of hyperparameters. Will receive what is passed to
        Estimator in the `params` parameter. This allows users to configure
        Estimators from hyper parameter tuning.
      config: Optional `tf.estimator.RunConfig` object. Will receive what is
        passed to Estimator as its `config` parameter, or a default value.
        Allows setting up things in the `model_fn` based on configuration such
        as `num_ps_replicas`, or `model_dir`. Unused currently.

    Returns:
      A `tf.EstimatorSpec` whose loss incorporates graph-based regularization.
    """

    # Uses the same variable scope for calculating the original objective and
    # the graph regularization loss term.
    with tf.compat.v1.variable_scope(
        tf.compat.v1.get_variable_scope(),
        reuse=tf.compat.v1.AUTO_REUSE,
        auxiliary_name_scope=False):
      # Extract sample features, neighbor features, and neighbor weights.
      sample_features, nbr_features, nbr_weights = (
          utils.unpack_neighbor_features(features,
                                         graph_reg_config.neighbor_config))

      # If no 'params' is passed, then it is possible for base_model_fn not to
      # accept a 'params' argument. See documentation for tf.estimator.Estimator
      # for additional context.
      if params:
        base_spec = base_model_fn(sample_features, labels, mode, params, config)
      else:
        base_spec = base_model_fn(sample_features, labels, mode, config)

      has_nbr_inputs = nbr_weights is not None and nbr_features

      # Graph regularization happens only if all the following conditions are
      # satisfied:
      # - the mode is training
      # - neighbor inputs exist
      # - the graph regularization multiplier is greater than zero.
      # So, return early if any of these conditions is false.
      if (not has_nbr_inputs or mode != tf.estimator.ModeKeys.TRAIN or
          graph_reg_config.multiplier <= 0):
        return base_spec

      # Compute sample embeddings.
      sample_embeddings = embedding_fn(sample_features, mode)

      # Compute the embeddings of the neighbors.
      nbr_embeddings = embedding_fn(nbr_features, mode)

      replicated_sample_embeddings = utils.replicate_embeddings(
          sample_embeddings, graph_reg_config.neighbor_config.max_neighbors)

      # Compute the distance between the sample embeddings and each of their
      # corresponding neighbor embeddings.
      graph_loss = distances.pairwise_distance_wrapper(
          replicated_sample_embeddings,
          nbr_embeddings,
          weights=nbr_weights,
          distance_config=graph_reg_config.distance_config)
      total_loss = base_spec.loss + graph_reg_config.multiplier * graph_loss

      if not optimizer_fn:
        # Default to Adagrad optimizer, the same as the canned DNNEstimator.
        optimizer = tf.train.AdagradOptimizer(learning_rate=0.05)
      else:
        optimizer = optimizer_fn()
      final_train_op = optimizer.minimize(
          loss=total_loss, global_step=tf.compat.v1.train.get_global_step())

    return base_spec._replace(loss=total_loss, train_op=final_train_op)

  # Replaces the model_fn while keeping other fields/methods in the estimator.
  estimator._model_fn = graph_reg_model_fn  # pylint: disable=protected-access
  return estimator