def _replicate_sources(self, sources, targets):
        """Replicates `sources` to match the shape of `targets`.

    `targets` should either have an additional neighborhood size dimension at
    axis -2 or be of the same rank as `sources`. If `targets` has an additional
    dimension and `sources` has rank k, the first k - 1 dimensions and last
    dimension of `sources` and `targets` should match. If `sources` and
    `targets` have the same rank, the last k - 1 dimensions should match and the
    first dimension of `targets` should be a multiple of the first dimension of
    `sources`. This multiple represents the fixed neighborhood size of each
    sample.

    Args:
      sources: Tensor with shape [..., feature_size] from which distance will be
        calculated.
      targets: Either a tensor with shape [..., neighborhood_size, feature_size]
        or [sources.shape[0] * neighborhood_size] + sources.shape[1:].

    Returns:
      `sources` replicated to be shape-compatible with `targets`.
    """
        # Depending on the rank of `sources` and `targets`, decide to broadcast
        # first, or replicate directly.
        if (sources.shape.ndims is not None and targets.shape.ndims is not None
                and sources.shape.ndims + 1 == targets.shape.ndims):
            return tf.broadcast_to(tf.expand_dims(sources, axis=-2),
                                   tf.shape(targets))

        return utils.replicate_embeddings(
            sources,
            tf.shape(targets)[0] // tf.shape(sources)[0])
Beispiel #2
0
 def testInvalidRepeatTimes(self):
     """Test the replicate_embeddings function with invalid repeat_times."""
     input_embeddings = tf.constant([
         [[1., 2., 4.], [3., 5., 8.]],
         [[2., 10., 3.], [1., 1., 1.]],
         [[4., 8., 1.], [8., 4., 1.]],
     ])
     replicate_times = tf.constant([-1, 0, 1])
     with self.assertRaises(tf.errors.InvalidArgumentError):
         self.evaluate(
             utils.replicate_embeddings(input_embeddings, replicate_times))
 def testInvalidRepeatTimes(self):
     """Test the replicate_embeddings function with invalid repeat_times."""
     input_embeddings = tf.constant(
         [[[1, 2, 4], [3, 5, 8]], [[2, 10, 3], [1, 1, 1]],
          [[4, 8, 1], [8, 4, 1]]],
         dtype='float32')
     replicate_times = tf.constant([-1, 0, 1])
     with self.cached_session():
         with self.assertRaises(tf.errors.InvalidArgumentError):
             output_embeddings = utils.replicate_embeddings(
                 input_embeddings, replicate_times)
             output_embeddings.eval()
 def testReplicateEmbeddingsWithIndexArray(self):
     """Test the replicate_embeddings function with 1-D replicate_times."""
     input_embeddings = tf.constant(
         [[[1, 2, 4], [3, 5, 8]], [[2, 10, 3], [1, 1, 1]],
          [[4, 8, 1], [8, 4, 1]]],
         dtype='float32')
     replicate_times = tf.constant([2, 0, 1])
     output_embeddings = utils.replicate_embeddings(input_embeddings,
                                                    replicate_times)
     with self.cached_session() as sess:
         self.assertAllEqual(
             [[[1, 2, 4], [3, 5, 8]], [[1, 2, 4], [3, 5, 8]],
              [[4, 8, 1], [8, 4, 1]]], sess.run(output_embeddings))
Beispiel #5
0
 def testReplicateEmbeddingsWithIndexArray(self):
     """Test the replicate_embeddings function with 1-D replicate_times."""
     input_embeddings = tf.constant([
         [[1., 2., 4.], [3., 5., 8.]],
         [[2., 10., 3.], [1., 1., 1.]],
         [[4., 8., 1.], [8., 4., 1.]],
     ])
     replicate_times = tf.constant([2, 0, 1])
     output_embeddings = self.evaluate(
         utils.replicate_embeddings(input_embeddings, replicate_times))
     expected_embeddings = [
         [[1., 2., 4.], [3., 5., 8.]],
         [[1., 2., 4.], [3., 5., 8.]],
         [[4., 8., 1.], [8., 4., 1.]],
     ]
     self.assertAllEqual(expected_embeddings, output_embeddings)
Beispiel #6
0
 def _replicate_with_dynamic_batch_size(embeddings, replicate_times):
     return utils.replicate_embeddings(embeddings, replicate_times)
    def graph_reg_model_fn(features, labels, mode, params=None, config=None):
        """The graph-regularized model function.

    Args:
      features: This is the first item returned from the `input_fn` passed to
        `train`, `evaluate`, and `predict`. This should be a dictionary
        containing sample features as well as corresponding neighbor features
        and neighbor weights.
      labels: This is the second item returned from the `input_fn` passed to
        `train`, `evaluate`, and `predict`. This should be a single `Tensor` or
        `dict` of same (for multi-head models). If mode is
        `tf.estimator.ModeKeys.PREDICT`, `labels=None` will be passed. If the
        `model_fn`'s signature does not accept `mode`, the `model_fn` must still
        be able to handle `labels=None`.
      mode: Optional. Specifies if this is training, evaluation, or prediction.
        See `tf.estimator.ModeKeys`.
      params: Optional `dict` of hyperparameters. Will receive what is passed to
        Estimator in the `params` parameter. This allows users to configure
        Estimators from hyper parameter tuning.
      config: Optional `tf.estimator.RunConfig` object. Will receive what is
        passed to Estimator as its `config` parameter, or a default value.
        Allows setting up things in the `model_fn` based on configuration such
        as `num_ps_replicas`, or `model_dir`. Unused currently.

    Returns:
      A `tf.estimator.EstimatorSpec` with graph regularization.
    """
        # Parameters 'params' and 'config' are optional. If they are not passed,
        # then it is possible for base_model_fn not to accept these arguments.
        # See documentation for tf.estimator.Estimator for additional context.
        kwargs = {'mode': mode}
        embedding_fn_kwargs = dict()
        if 'params' in base_model_fn_args:
            kwargs['params'] = params
            embedding_fn_kwargs['params'] = params
        if 'config' in base_model_fn_args:
            kwargs['config'] = config

        # Uses the same variable scope for calculating the original objective and
        # the graph regularization loss term.
        with tf.compat.v1.variable_scope(tf.compat.v1.get_variable_scope(),
                                         reuse=tf.compat.v1.AUTO_REUSE,
                                         auxiliary_name_scope=False):
            nbr_features = dict()
            nbr_weights = None
            if mode == tf.estimator.ModeKeys.TRAIN:
                # Extract sample features, neighbor features, and neighbor weights if we
                # are in training mode.
                sample_features, nbr_features, nbr_weights = (
                    utils.unpack_neighbor_features(
                        features, graph_reg_config.neighbor_config))
            else:
                # Otherwise, we strip out all neighbor features and use just the
                # sample's features.
                sample_features = utils.strip_neighbor_features(
                    features, graph_reg_config.neighbor_config)

            base_spec = base_model_fn(sample_features, labels, **kwargs)

            has_nbr_inputs = nbr_weights is not None and nbr_features

            # Graph regularization happens only if all the following conditions are
            # satisfied:
            # - the mode is training
            # - neighbor inputs exist
            # - the graph regularization multiplier is greater than zero.
            # So, return early if any of these conditions is false.
            if (not has_nbr_inputs or mode != tf.estimator.ModeKeys.TRAIN
                    or graph_reg_config.multiplier <= 0):
                return base_spec

            # Compute sample embeddings.
            sample_embeddings = embedding_fn(sample_features, mode,
                                             **embedding_fn_kwargs)

            # Compute the embeddings of the neighbors.
            nbr_embeddings = embedding_fn(nbr_features, mode,
                                          **embedding_fn_kwargs)

            replicated_sample_embeddings = utils.replicate_embeddings(
                sample_embeddings,
                graph_reg_config.neighbor_config.max_neighbors)

            # Compute the distance between the sample embeddings and each of their
            # corresponding neighbor embeddings.
            graph_loss = distances.pairwise_distance_wrapper(
                replicated_sample_embeddings,
                nbr_embeddings,
                weights=nbr_weights,
                distance_config=graph_reg_config.distance_config)
            scaled_graph_loss = graph_reg_config.multiplier * graph_loss
            tf.compat.v1.summary.scalar('loss/scaled_graph_loss',
                                        scaled_graph_loss)

            supervised_loss = base_spec.loss
            tf.compat.v1.summary.scalar('loss/supervised_loss',
                                        supervised_loss)

            total_loss = supervised_loss + scaled_graph_loss

            if not optimizer_fn:
                # Default to Adagrad optimizer, the same as the canned DNNEstimator.
                optimizer = tf.compat.v1.train.AdagradOptimizer(
                    learning_rate=0.05)
            else:
                optimizer = optimizer_fn()
            train_op = optimizer.minimize(
                loss=total_loss,
                global_step=tf.compat.v1.train.get_global_step())
            update_ops = tf.compat.v1.get_collection(
                tf.compat.v1.GraphKeys.UPDATE_OPS)
            if update_ops:
                train_op = tf.group(train_op, *update_ops)

        return base_spec._replace(loss=total_loss, train_op=train_op)
  def graph_reg_model_fn(features, labels, mode, params=None, config=None):
    """The graph-regularized model function.

    Args:
      features: This is the first item returned from the `input_fn` passed to
        `train`, `evaluate`, and `predict`. This should be a dictionary
        containing sample features as well as corresponding neighbor features
        and neighbor weights.
      labels: This is the second item returned from the `input_fn` passed to
        `train`, `evaluate`, and `predict`. This should be a single `Tensor` or
        `dict` of same (for multi-head models). If mode is
        `tf.estimator.ModeKeys.PREDICT`, `labels=None` will be passed. If the
        `model_fn`'s signature does not accept `mode`, the `model_fn` must still
        be able to handle `labels=None`.
      mode: Optional. Specifies if this is training, evaluation, or prediction.
        See `tf.estimator.ModeKeys`.
      params: Optional `dict` of hyperparameters. Will receive what is passed to
        Estimator in the `params` parameter. This allows users to configure
        Estimators from hyper parameter tuning.
      config: Optional `tf.estimator.RunConfig` object. Will receive what is
        passed to Estimator as its `config` parameter, or a default value.
        Allows setting up things in the `model_fn` based on configuration such
        as `num_ps_replicas`, or `model_dir`. Unused currently.

    Returns:
      A `tf.EstimatorSpec` whose loss incorporates graph-based regularization.
    """

    # Uses the same variable scope for calculating the original objective and
    # the graph regularization loss term.
    with tf.compat.v1.variable_scope(
        tf.compat.v1.get_variable_scope(),
        reuse=tf.compat.v1.AUTO_REUSE,
        auxiliary_name_scope=False):
      # Extract sample features, neighbor features, and neighbor weights.
      sample_features, nbr_features, nbr_weights = (
          utils.unpack_neighbor_features(features,
                                         graph_reg_config.neighbor_config))

      # If no 'params' is passed, then it is possible for base_model_fn not to
      # accept a 'params' argument. See documentation for tf.estimator.Estimator
      # for additional context.
      if params:
        base_spec = base_model_fn(sample_features, labels, mode, params, config)
      else:
        base_spec = base_model_fn(sample_features, labels, mode, config)

      has_nbr_inputs = nbr_weights is not None and nbr_features

      # Graph regularization happens only if all the following conditions are
      # satisfied:
      # - the mode is training
      # - neighbor inputs exist
      # - the graph regularization multiplier is greater than zero.
      # So, return early if any of these conditions is false.
      if (not has_nbr_inputs or mode != tf.estimator.ModeKeys.TRAIN or
          graph_reg_config.multiplier <= 0):
        return base_spec

      # Compute sample embeddings.
      sample_embeddings = embedding_fn(sample_features, mode)

      # Compute the embeddings of the neighbors.
      nbr_embeddings = embedding_fn(nbr_features, mode)

      replicated_sample_embeddings = utils.replicate_embeddings(
          sample_embeddings, graph_reg_config.neighbor_config.max_neighbors)

      # Compute the distance between the sample embeddings and each of their
      # corresponding neighbor embeddings.
      graph_loss = distances.pairwise_distance_wrapper(
          replicated_sample_embeddings,
          nbr_embeddings,
          weights=nbr_weights,
          distance_config=graph_reg_config.distance_config)
      total_loss = base_spec.loss + graph_reg_config.multiplier * graph_loss

      if not optimizer_fn:
        # Default to Adagrad optimizer, the same as the canned DNNEstimator.
        optimizer = tf.train.AdagradOptimizer(learning_rate=0.05)
      else:
        optimizer = optimizer_fn()
      final_train_op = optimizer.minimize(
          loss=total_loss, global_step=tf.compat.v1.train.get_global_step())

    return base_spec._replace(loss=total_loss, train_op=final_train_op)